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1. Introduction

In a short period, the advent of large language models (LLMs) has made a profound 
impact on the world. These models have transformed the landscape of artificial 
intelligence by showcasing their remarkable capacities in understanding and generating 
language. Contrary to their predecessors, LLMs such as GPT-4 exhibit a level of 
linguistic comprehension and production that often parallels, and in some cases, 
surpasses human abilities (Bojic et al. 2023; Herbold et al. 2023; Orru et al. 2023; 
Taloni et al. 2023; Wang et al. 2024; Zhai et al. 2024). This leap in performance 
has not only gathered widespread attention but has also reshaped our perception of 
AI’s potential in language comprehension, challenging our previous assumptions about 
the limits of machine-based language processing.

While LLMs demonstrate impressive linguistic performance, the language 
processing mechanisms of LLMs remain largely opaque, particularly pertains to how 
they handle complex syntactic structures in language. This lack of clarity raises 
questions about the nature of their language comprehension and production—whether 
they process language in a manner that reflects human-like processing or if their 
capabilities are more akin to sophisticated algorithms with a huge amount of input 
data simulating language use (Linzen and Baroni 2021). This research paper seeks 
to explore these questions, focusing primarily on the syntactic processing of LLMs.

A deeper understanding of their mechanisms not only promises to enhance the 
development of LLMs by identifying and improving their linguistic limitations but 
also offers insights into human language acquisition and processing. This research 
is particularly concerned with the syntactic processing of LLMs, which, despite not 
being explicitly taught specific linguistic rules, often display a remarkable grasp of 
complex syntactic structures, mirroring human-like processing to some extent (Wilcox 
et al. 2018; Futrell et al. 2019; Wilcox et al. 2019; Hu et al. 2020; Linzen and Baroni 
2021; Lee et al. 2022; Lee and Shin 2023). This phenomenon raises intriguing questions 
about the nature of language acquisition and processing, both in machines and 
humans. While humans rely on a rich mix of linguistic input and cognitive faculties 
(Hauser et al. 2002), LLMs achieve a semblance of this understanding through vast 
amounts of textual data and algorithmic processing. Investigating how LLMs, through 
sheer exposure to language data, manage to simulate an understanding of syntactic 
rules may offer potential insights into the learning mechanisms in both AI and 
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humans. This research aims to shed light on these parallels and distinctions, 
contributing to our knowledge of language processing in both domains.

In addressing the intricate capabilities of LLMs’ syntactic processing, this research 
employs a targeted evaluation approach, a method grounded in psycholinguistic 
experimental techniques (Linzen et al. 2016). This approach enables the assessment 
of LLMs’ syntactic processing by observing their responses to carefully constructed 
sentences that challenge specific syntactic representations (Marvin and Linzen 2018). 
Similar to the methods used to unravel the complexities of human language processing, 
this technique allows for a nuanced examination of how LLMs navigate linguistic 
structures. For instance, Linzen et al. (2016) explore the ability of Long Short-Term 
Memory (LSTM) networks to learn syntax-sensitive dependencies, such as English 
subject-verb agreement. The study showed LSTMs could grasp grammar with high 
accuracy if trained explicitly, highlighting the need for more sophisticated architectures 
that benefit from direct supervision to improve the learning of syntax-sensitive 
dependencies. This approach may serve as a pivotal tool for probing the LLMs language 
processing and guiding future advancements in model architecture and training.

Following the pioneering work on the targeted evaluation approach, numerous 
studies have applied this methodology to explore a broad range of syntactic aspects 
across different LLMs, including Transformers (Bacon and Regier, 2019; Goldberg 
2019; Van Schijndel et al. 2019; Ettinger 2020; Hu et al. 2020; Kuncoro et al. 2020; 
Lee et al. 2022; Lee and Shin 2023) as well as Recurrent Neural Networks (RNNs) 
(Linzen et al. 2016; Futrell et al. 2018; Gulordava et al. 2018; Marvin and Linzen 
2018; van Schijndel and Linzen 2018; Wilcox et al. 2018; Frank and Hoeks 2019; 
Futrell et al. 2019; Wilcox et al. 2019; Chaves 2020; McCoy et al. 2020). These studies, 
employing diverse metrics such as accuracy (Linzen et al. 2016), surprisal (Futrell 
et al. 2018), and attention maps (Lee and Shin 2023), have demonstrated that LLMs 
can exhibit human-like syntactic processing patterns across various syntactic 
dimensions, including agreement (Gulordava et al. 2018), subordination (Wilcox et 
al. 2018), garden-path sentences (van Schijndel and Linzen 2018), and long-distance 
dependencies (Wilcox et al. 2018). Importantly, this syntactic proficiency is not 
necessarily the result of additional, syntax-focused training. While earlier models 
struggled with complex syntactic structures when trained solely on general linguistic 
tasks (Linzen et al. 2016), more advanced models trained on larger datasets showed 
syntactic processing often comparable to those of humans, without explicit syntactic 
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training (Wilcox et al. 2018). This finding suggests the potential of LLMs to internalize 
complex syntactic knowledge from extensive data exposure alone.

However, when dissecting the syntactic abilities of individual models, it becomes 
evident that not all models uniformly exhibit human-like syntactic proficiency across 
all aspects of syntax. For instance, while BERT has shown overall proficiency in 
subject-verb agreement tasks, it falls short in more complex structues such as 
agreements within object relatives clause (van Schijndel et al. 2019). More interstingly, 
LLM’s overall language performance does not guarantee superior syntactic processing 
capabilities. Even advanced models such as GPT, have not consistently surpassed 
LSTMs in syntactic tasks (van Schijndel et al. 2019), encountering similar challenges 
and showing less human-like performance in several syntactic tasks (Bacon and Regier 
2019). Moreover, the significant enlargement of network size often yields only marginal 
syntactic performance improvements (Lee et al. 2022). This suggests that a model’s 
general linguistic performance or size does not necessarily guarantee superior syntactic 
capabilities.

Yet, it remains possible that these earlier models had not reached a sufficient 
threshold of advancement for general improvements to translate into syntactic gains. 
The emergence of GPT-3.5 and GPT-4 presents an opportunity to test this possibility. 
Based on these models, ChatGPT has demonstrated language abilities that often 
approach or even surpass human performance in several language-related tasks, such 
as essay writing (Herbold et al. 2023) and problem solving (Orru et al. 2023; Zhai 
et al. 2024). These advances represent a qualitative leap beyond the Transformers 
examined in previous syntactic evaluations, raising the question of whether such 
substantial improvements in general linguistic capabilities might finally yield 
corresponding enhancements in syntactic processing. This study aims to explore this 
question, examining whether GPT-3.5 and GPT-4’s exceptional general performance 
is paralleled by improved syntactic abilities.

Despite the growing interest in ChatGPTs, attempts to apply the targeted evaluation 
approach to the model for the assessment of its syntactic abilities have been scarce. 
A notable challenge is the lack of access to ChatGPT’s code since GPT-3.5, preventing 
researchers from examining its internal processes with surprisal or attention maps, 
which is similar to analyzing online data such as reaction times or brain imaging 
in human studies. However, it remains possible to probe into GPTs through methods 
analogous to studying human language processing, such as production, accuracy 
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assessments, or grammatical judgment tasks. 
One such study by Cai et al. (2024) aims to evaluate how ChatGPT’s language 

processing compares to that of humans, conducting 12 pre-registered psycholinguistic 
experiments. This suite of experiments included two specific tests designed to 
scrutinize its syntactic processing: syntactic priming and syntactic ambiguity resolution. 
These tests revealed that ChatGPT exhibits human-like patterns in syntactic reuse 
but it showed distinct approaches in managing syntactic ambiguities. In cases of 
syntactic ambiguity, humans often interpret ambiguous phrases by relying on  
contextual clues to resolve noun-verb (NP/VP) ambiguities, but ChatGPT did not 
show a preference for using contextual information in the same manner as humans. 
This suggests that ChatGPT’s approach to resolving syntactic ambiguities may diverge 
from the human processing model.

Following this line of research that demonstrates the viability of production-based 
methods for probing LLM syntax (Bazhukov et al., 2024; Cai et al., 2024; Qiu et 
al., 2025), the current study applies similar approaches to examine ambiguity resolution 
in LLMs. Ambiguity resolution is valuable for understanding syntactic processing 
because it reveals the complex interplay of multiple linguistic factors during sentence 
comprehension. When faced with ambiguous structures, the choice between competing 
interpretations depends on various linguistic cues such as semantic plausibility, phrase 
length, verb properties, and contextual information. Previous research indicates that 
LLMs similarly weigh such linguistic cues, for instance considering plausibility and 
transitivity when resolving ambiguities, drawing parallels to human syntactic 
processing (Futrell et al. 2018; van Schijndel and Linzen 2018; Lee et al. 2022; Lee 
and Shin 2023). Thus, by examining how models resolve syntactic ambiguities, we 
can gain insights into which linguistic factors they prioritize and how they utilize 
different sources of information in syntactic processing.

Among various types of syntactic ambiguity, this study focuses specifically on 
garden-path sentences. Garden-path sentences are temporarily ambiguous structures 
that initially guide processors toward incorrect interpretations before requiring 
reanalysis for proper comprehension (Bever 1970; Frazier and Rayner 1982). For 
instance, the sentence “While the man hunted the deer ran into the wood” initially 
suggests “the deer” as the object of “hunted,” whereas it actually serves as the subject 
of “ran” (Christianson et al. 2001). This setup prompts a reanalysis, where the 
misinterpretation of ‘the deer’ as the object of ‘hunted’ is abandoned while recognizing 
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its true function as the subject of ‘ran.’ During this reanalysis process, ‘the deer’ is 
syntactically ambiguous since it can be considered either as the object of ‘hunted’ 
or the subject of ‘ran,’ which should be resolved to correctly parse the sentence.

This structure provides several methodological advantages over the NP/VP 
ambiguities examined in previous research (Cai et al. 2024). In contrast to NP/VP 
ambiguities where multiple interpretations remain equally valid, garden-path sentences 
require identification of a singular syntactically correct resolution. This characteristic 
enables clear assessment of accuracy, as there is a correct interpretation that can be 
evaluated. Furthermore, these structures present significant processing challenges for 
human readers as well, establishing them as a benchmark for evaluating whether LLMs 
can match or exceed human syntactic processing capabilities (MacDonald 2013). By 
choosing such tasks, we can more meaningfully discuss and evaluate the advancements 
in LLMs’ capabilities in handling complex syntactic structures.

In particular, this study focuses more on the second aspect, the challenging nature 
of processing garden-path sentences for human readers, as it could provide insightful 
observations relevant to both human and LLM syntactic processing, especially in the 
context of a “good-enough” representation. Ferreira and Patson (2007) proposed the 
good-enough model of language comprehension, noting that individuals frequently 
misinterpret garden-path sentences, as initial misinterpretations continue to affect their 
overall understanding. For example, upon reading a garden-path sentence such as 
“While Mary bathed the baby played in the crib,” the majority of readers would 
mistakenly respond ‘yes’ when asked if “Mary bathed the baby” (Christianson et al. 
2001). These erroneous responses, however, do not necessarily indicate a failure in 
resolving syntactic ambiguity, because most participants also correctly answered ‘yes’ 
to “Did the baby play in the crib?,” revealing that they did recognize ‘the baby’ as 
the subject of ‘played.’ Based on these findings, Ferreira and Patson (2007) argued 
that humans frequently construct a quick and approximate interpretation of a sentence 
without engaging in deep syntactic analysis, particularly in cases of complex or 
ambiguous syntax. This “good-enough” approach demonstrates the fallibility of human 
syntactic processing—or, from another perspective, a strategic form of processing that 
prioritizes the efficiency (Ferreira and Patson 2007).

In this regard, this study seeks to explore how ChatGPT processes garden-path 
sentences. Previous research indicates that models based on the Transformer 
architecture exhibit processing strategies akin to those of human processors when 
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confronted with garden-path sentences, utilizing linguistic cues such as plausibility 
and transitivity (Lee et al. 2022; Lee and Shin 2023). Given the advancements in GPT’s 
general language performance beyond its predecessors, it is hypothesized that it may 
also exhibit a processing pattern for garden-path sentences that closely resembles 
human comprehension strategies. Nevertheless, it is crucial to note that superior 
general linguistic performance does not always imply enhanced syntactic processing 
(van Schijndel et al. 2019). This raises the question of whether GPT’s interpretations 
of garden-path sentences consistently align with human processing patterns.

The complexity of predicting outcomes is further compounded when considering 
a human-like processing pattern of garden-path sentences does not necessarily 
represent the most syntactically accurate interpretation. From the perspective of the 
“good-enough” representation, human syntactic processing can be susceptible to errors, 
with syntactic ambiguity often resulting in incorrect interpretations. If LLMs indeed 
emulate human syntactic processing, they might also replicate these flawed syntactic 
processing patterns. Nonetheless, given the distinct learning mechanisms underpinning 
LLMs, it is plausible that they may approach the processing of garden-path sentences 
in a fundamentally different manner, potentially exhibiting either “mechanical” 
accuracy or even more probabilistic, heuristic-based processing. This research aims 
to explore these issues, summarizing them into the following research questions:

1. Do GPT models manifest a pattern of syntactic processing in the resolution of 
garden-path sentences that parallels human cognitive processes? Specifically, how do 
they handle syntactic constructs that typically pose challenges to human processing, 
and do they generate more or fewer errors in these contexts?
2. Does a GPT model with superior general performance exhibit better or more 
human-like syntactic processing?

To investigate these questions, this research employed a targeted evaluation 
approach, conducting three tests on the GPT-3.5 and GPT-4 models, which serve 
as the foundation for ChatGPT. Initially, the results from these models are compared 
with those from human parsers to perform a comparative analysis between LLMs 
and humans. Concurrently, a comparison between GPT-3.5 and its successor, GPT-4, 
which demonstrates superior general performance, is conducted to assess the impact 
of advancements in language model capabilities on syntactic processing efficiency.
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2. Experiment 1

Experiment 1 applied the methods adapted from the first experiment of Christianson 
et al. (2001) to GPTs and compared these results with those obtained from human 
participants in Christianson et al. (2001). Christianson et al. (2001), in their first 
experiment, investigated participants’ responses to the sentence such as “While the 
man hunted the deer ran into the woods” followed by the question such as “Did 
the man hunt the deer?”. In this sentence, “the deer” could initially be misinterpreted 
as the object of “hunted,” despite it serving as the subject for “ran.” Consequently, 
a syntactically correct interpretation of the sentence does not provide evidence of 
the man hunting the deer, rendering “No” as the accurate response to the question. 
The study also considered two main linguistic factors within garden path sentences: 
length (long vs. short) and plausibility (plausible vs. implausible). It is hypothesized 
that longer conditions likely increase errors by extending the time readers dwell on 
the incorrect interpretation, while plausible conditions do so by making it harder 
for readers to reject the misunderstanding. The results of Christianson et al. (2001) 
showed that participants were significantly more likely to incorrectly answer “yes” 
in the garden-path condition (Figure 1). Additionally, more plausible final 
interpretations or longer ambiguous regions resulted in more incorrect “yes” responses. 
These results suggest that participants often stick with their initial misinterpretation 
of the sentence’s meaning without fully reanalyzing its structure. Experiment 1 
examined the responses of GPT-3.5 and GPT-4 to identical sentences, aiming to 
determine if these models exhibit the same tendency for inaccurate responses and 
those are influenced by plausibility and length.

2.1 Method

2.1.1 Models

For LLMs, we utilized the latest versions of GPT-3.5 and GPT-4, as available in 
December 2023. GPT-4 represents a more advanced model, demonstrating better 
contextual comprehension, greater coherence over longer passages, and enhanced 
accuracy in generating contextually appropriate responses (Achiam et al. 2023).
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2.1.2 Procedure

The experiment was executed via OpenAI’s chat completion API. During the task, 
the models were instructed to read the sentence and answer the subsequent question 
with either ‘Yes’ or ‘No.’ They were, then, presented with sentences such as (1a) and 
asked to respond ‘yes’ or ‘no’ to questions such as (1d). The task was repeated ten 
times per each sentence, and the results were averaged across the iterations. Each 
trial used zero-shot prompts through separate API calls where the conversation context 
was reset after each response, ensuring no influence between trials.

2.1.3 Materials

The study employed the same 42 sentence items used in Christianson et al. (2001). 
Each item was presented under one of six conditions as in (1). While typically human 
participants would encounter only one version of each sentence item, in this task, 
the models were exposed to all six conditions. However, as noted in the procedure 
section, the experiment was conducted through separate API calls, which ensured that 
responses to previous items did not influence subsequent ones. The garden-path 
sentences were manipulated across four conditions by altering two linguistic factors: 
the length of the ambiguous region (short, “the deer,” vs. long, “the deer that was 
brown and graceful”) and the plausibility of misinterpreting the ambiguous noun 
phrase (NP) as the object of the main verb (plausible, “the hunted deer ran into 
the woods,” vs. implausible, “the hunted deer paced in the zoo”). Non-garden path 
sentences were differentiated from garden path sentences through the inclusion of 
an additional NP (e.g., “the pheasant”), with two non-garden path conditions varying 
only in the length of the ambiguous region. The same question was presented for 
all six versions of a sentence item such as (1d).

(1) a. While the man hunted the deer (that was brown and graceful)
ran into the woods. [Garden-path – Plausible]

b. While the man hunted the deer (that was brown and graceful) paced
in the zoo. [Garden-path – Implausible]

c. While the man hunted the pheasant the deer (that was brown and
graceful) ran into the woods. [No Garden-path – Plausible]
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d. Question: Did the man hunt the deer? 
* Inclusion of the word in parentheses indicates long conditions.

2.1.4 Statistical analysis

The statistical analysis was conducted using the R programming environment (R Core 
Team 2023), utilizing generalized linear mixed-effects models (GLMM) (Baayen et 
al. 2008) from lmerTest (Kuznetsova et al. 2017) packages to evaluate differences in 
comprehension question accuracy. Initially, we aimed to identify difference in the 
error rates between the garden-path and non-garden-path conditions by incorporating 
Garden-path and Model as fixed effects and Items as random effects, leading to a 
2×2 factorial analysis (Garden-path vs. Non-garden-path × GPT-3.5 vs. GPT-4). The 
second phase focused on the garden-path sentences, analyzing the effects of length 
and plausibility. The model assumed Plausibility, Length, and Model as fixed effects 
and Items as random effects, forming 2×2×2 factorial design (Plausible vs. Implausible 
× Short vs. Long × GPT-3.5 vs. GPT-4). The third phase assessed error rate differences 
in non-garden-path sentences, with Length and Model as fixed effects, and Items as 
random effects, in a 2×2 factorial design (Short vs. Long × GPT-3.5 vs. GPT-4). In 
all analyses, when any interaction was detected, post-hoc analyses were conducted, 
using the emmeans R package (Lenth 2023). In instances of convergence issues or 
failure to meet the assumption of multicollinearity, the strategy was to start by 
removing the random intercept or the three-way interaction, potentially simplifying 
the model further by eliminating other interactions if necessary, and then proceeding 
with the statistical analysis using these reduced models. Any employment of a simpler 
model was stated in the results. Across all analyses, the dependent variable was coded 
as a binary outcome, with 0 and 1, where 1 denoted an erroneous response, specifically 
“Yes” in this experiment. All human data were obtained from Christianson et al. 
(2001). Given that the human data consist of collective responses from numerous 
individuals, while the LM data results from multiple iterations by a singular model, 
this discrepancy may affect the suitability of inferential statistics for head-to-head 
analysis. Consequently, our analysis between humans and LMs has been oriented 
towards utilizing descriptive statistics to highlight observable patterns, focusing on 
distinctions that are numerically significant. For data visualization, the Python 
packages seaborn (Waskom 2021) and matplotlib (Hunter 2007) were employed.



Good-enough but more error-prone  549

2.2 Results

In the first analysis for error rates between garden-path and non-garden-path 
sentences, we found significant main effects for both Garden-path (estimate=2.20, 
SE=0.10, z=22.75, p<0.001) and Model (estimate=1.11, SE=0.09, z=11.82, p<0.001). 
The results indicates that both models made more errors on garden-path sentences 
and GPT-3.5 had higher overall error rates than GPT-4. Additionally, a significant 
Garden-path × Model interaction emerged (estimate=-1.10, SE=0.09, z=-11.78, 
p<0.001). This interaction reveals that the two models differed most on 
non-garden-path sentences, where GPT-3.5 showed higher error rates than GPT-4, 
while their performance converged on garden-path sentences.

The second analysis, which focused on error rates within garden-path sentences, 
revealed significant main effects of Plausibility (estimate=-1.14, SE=0.09, z=-12.94, 
p<0.001), Length (estimate=0.85, SE=0.09, z=9.73, p<0.001), and Model 
(estimate=-0.25, SE=0.09, z=-2.92, p<0.01). These effects indicate that errors were more 
frequent in implausible sentences, sentences with longer ambiguous regions, and for 
GPT-3.5. However, given that the actual mean error rates were quite similar between 
GPT-4 (79.76%) and GPT-3.5 (79.88%), the main effect of Model seems to be better 
understood through its interactions with other factors. The analysis also revealed 
significant two-way interactions: Plausibility × Model (estimate=0.33, SE=0.09, z=3.81, 
p<0.001), where GPT-4 shows a larger plausibility effect than GPT-3.5; Length × Model 
(estimate=-0.39, SE=0.09, z=-4.47, p<0.001), where GPT-4 shows a larger length effect 
than GPT-3.5; and Plausibility × Length (estimate=-0.25, SE=0.09, z=-2.89, p<0.01), 
where the length effect is stronger for plausible sentences than implausible sentences. 
Moreover, a significant three-way interaction among Plausibility, Length, and Model 
was observed (estimate=0.17, SE=0.09, z=2.00, p=0.046), where GPT-4 produced more 
errors on long plausible sentences but fewer errors on short implausible sentences.

In the third phase of analysis for non-garden-path conditions, a significant main 
effect was observed for Model (estimate=4.20, SE=0.52, z=8.03, p<0.001), with GPT-3.5 
showing significantly higher error rates than GPT-4. Additionally, a significant 
interaction between Length × Model emerged (estimate=0.54, SE=0.22, z=2.50, p<0.05), 
where GPT-3.5 showed higher error rates for longer sentences while GPT-4’s error 
rates were unaffected by sentence length.
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Summarizing, both models demonstrated a higher propensity for errors in 
garden-path conditions, influenced by sentence plausibility and length, with errors 
increasing in plausible and longer conditions. While the overall patterns were similar 
between the models, GPT-3.5 had markedly higher error rates in non-garden-path 
conditions. Another difference was that GPT-4 displayed a larger plausibility effect 
and a greater sensitivity to sentence length within garden-path conditions, particularly 
showing higher error rates in long sentence conditions compared to GPT-3.5.

Figure 1. Error rates by Garden-path, Plausibility and Length from Experiment 1 comparing 
GPT-3.5, GPT-4, and humans when responding to comprehension questions, with human 

data referenced from Experiment 1B in Christianson et al. (2001)

When these results are compared to human performance, a similar trend emerges. 
Both humans and LLMs showed increased errors in garden-path conditions, influenced 
by plausibility and length. However, the error rates for LLMs were notably higher, 
especially in garden-path conditions where their error rates were more than double 
those observed in humans. Regarding non-garden-path conditions, the performance 
varied between the models; GPT-3.5 recorded much higher error rates than humans, 
whereas GPT-4 demonstrated comparable performance with few errors.

2.3. Discussion

Experiment 1 investigated the processing of garden-path sentences by GPT-3.5 and 
GPT-4, comparing their responses with human patterns. Essentially, both models 
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showed similar sentence processing patterns to humans, more frequently producing 
errors in garden-path than non-garden-path sentences. These errors increased in the 
conditions where the initial misinterpretations were more difficult to be rejected due 
to increased plausibility or extended ambiguous regions. This pattern is consistent 
with the good-enough processing framework (Ferreira and Patson, 2007), where initial 
misinterpretations persist and influence sentence comprehension despite structural 
reanalysis. However, LLMs produced a notably higher count of erroneous responses 
than humans, especially in garden-path conditions. This suggests that LLMs, exhibiting 
syntactic processing patterns akin to humans, similarly struggle with sentences that 
present syntactic challenges to humans, often to an even greater extent.

In comparing GPT-3.5 and GPT-4, differences in handling garden-path sentences 
were minimal. GPT-4, however, did show fewer errors in implausible short conditions 
compared to GPT-3.5, although this advantage did not extend broadly across all 
conditions. Intriguingly, GPT-4 was more susceptible to incorrect “Yes” responses in 
scenarios involving longer ambiguous regions. GPT-4’s standout performance was 
evident only in non-garden-path sentences, where its responses were almost error-free, 
surpassing even that of human participants. This contrasts with GPT-3.5, which, in 
non-garden-path conditions, recorded higher error rates than humans.

While GPT-3.5 showed near chance-level performance in non-garden-path 
conditions, the systematic variation across conditions and the low error rates observed 
in Experiments 2 and 3 suggest that the errors may not be attributed simply to a 
failure to comprehend the sentences. Previous research has reported a yes-bias in 
humans (Christianson et al., 2001). Given that LLMs tend to show a preference for 
affirmative responses to input, it is possible that a similar yes-bias exists in these 
models. However, as will be shown in Experiment 3, the low error rates observed 
in certain conditions indicate that the errors cannot be attributed solely to yes-bias.

3. Experiment 2

Experiment 2 adapted methods from Christianson et al. (2001)’s second experiment, 
which aimed to explore three issues raised from their first experiment.

The first issue Christianson et al. (2001) identified was whether the “yes” responses 
in their experiment resulted from a lingering misinterpretation despite syntactic 
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reanalysis, or from a mere failure to reanalyze. For instance, in the sentence “While 
the man hunted the deer ran into the wood,” there is a possibility that “the deer” 
incorrectly parsed as the object of “hunted” and the subject of “ran” was erroneously 
left empty. Their second experiment probed this by asking questions such as “Did 
the deer run into the woods?” and seeing if participants correctly identified subjects 
of the main clause, which indicates a reanalysis from their initial misunderstanding.

The second issue examined whether the errors in garden path sentences stemmed 
from an initial syntactic error or from pragmatic expectations. The participants may 
interpret “the man” as hunting “the deer”, not because they were led down the “garden 
path” to an incorrect initial interpretation but because the real-world likelihood  
suggest that “the man” would be hunting “the deer.” By reversing the order of clauses 
in sentences (e.g., “The deer ran into the woods while the man hunted”), the 
experiment tested if participants would still assume “the man” was hunting “the deer” 
without the syntactic cues leading to this initial garden path misinterpretation, thus 
differentiating between syntactic influence and pragmatic inference.

The third issue explored how the length of an ambiguous sentence region affected 
interpretation, questioning if the challenge lied in the duration of holding onto an 
incorrect role assignment or in the overall sentence length. The latter hypothesis gained 
some support from observations that even a non-garden path condition showed length 
effects, suggesting that sentence length itself could contribute to interpretation 
difficulty. The experiment further investigated this by manipulating the position of 
the head of the ambiguous noun phrase (“the deer that was brown and graceful” 
to “the brown and graceful deer”), offering another way to examine the impact of 
committing to a wrong analysis over time.

Our experiment 2 investigated how GPT-3.5 and GPT-4 perform the same three 
issues identified by Christianson et al. (2001). In Experiment 1, the models exhibited 
error patterns similar to humans, and under garden-path conditions, LLMs were more 
likely to incorrectly respond with "yes," suggesting a potential reanalysis failure. 
Experiment 2 first sought to determine whether the models could correctly capture 
the target word as the subject in the main clause, using targeted questions such as 
(2f). Additionally, Experiment 2 aimed to discern whether the high error rates were 
due to purely syntactic misinterpretations or if pragmatic factors also influenced the 
outcomes. Given that LLMs learn language from extensive text data, not syntactic 
rules, their sentence processing might lean more on world knowledge. This is partially 
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supported by GPT-3.5’s high error rates in non-garden-path sentences, which may 
indicate a reliance on pragmatic interpretation. The experiment also investigated into 
the underlying causes of length effect. The models showed more errors in longer 
sentences, suggesting a heightened sensitivity to sentence length. This is intriguing 
since transformer-based LLMs do not process sentences word-by-word manner, but 
through an attention mechanism that assesses the entire input at once. Understanding 
why GPTs are impacted by sentence length could reveal deeper insights into their 
limitations and processing strategies.

3.1 Method

3.1.1 Models and procedure

The models and procedure were identical to those in Experiment 1. Each sentence 
was tested 10 times, with results averaged across iterations

3.1.2 Materials

Experiment 2 utilized 40 sentence items identical to those used in Christianson et 
al. (2001)’s Experiment 2. Following Christianson et al. (2001)’s design, these sentences 
were presented across different experimental conditions with modifications to address 
three issues. The first adjustment involved introducing a new condition where the 
question targeted the interpretation of the main clause, exemplified by (2f) (Main 
Clause Probing Question). Furthermore, the order of clauses was altered, arranging 
the subordinate clause either before (Garden-path) or after (Non-garden-path) the 
main clause. Lastly, the positioning of the head of the ambiguous noun phrase was 
varied, occurring either early (Head Early) or late (Head Late) within the phrase.

(2) a. While the man hunted the deer that was brown and graceful ran into 
the woods. [Garden-path – Head Early]

b. While the man hunted the brown and graceful deer ran into the woods.
[Garden-path – Head Late]

c. The deer that was brown and graceful ran into the woods while 
the man hunted. [Non-garden-path – Head Early]
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d. The brown and graceful deer ran into the woods while the man hunted.
[Non-garden-path – Head Late]

e. Subordinate Clause Probing Question: Did the man hunt the deer?
f. Main Clause Probing Question: Did the deer run into the woods?

In the human study by Christianson et al. (2001), sentence items and question 
types were counterbalanced using a Latin square design, such that each participant 
saw each sentence item only once but encountered both subordinate and main clause 
probing questions across different items. In contrast, the current LLM experiment 
tested each model on all conditions for every sentence item, as the separate API calls 
ensured that previous trials did not influence subsequent responses.

3.1.3 Statistical analysis

All statistical analysis procedures were the same as those in Experiment 1 and were 
conducted in two stages. The initial phase aimed to discern differences attributable 
to question type and the influence of LLMs. In this stage, Question Type and Model 
were treated as fixed effects, with Items as random effects, forming a 2×2 factorial 
design (Subordinate Question vs. Main Question × GPT-3.5 vs. GPT-4). The 
subsequent phase focused on the subordinate clause probing questions, structured in 
a 2×2×2 factorial design (Garden-path vs. Non-garden-path × Early vs. Late × GPT-3.5 
vs. GPT-4) with Garden-path, Head Position, and Model as fixed effects and Items 
as random effects. In each of the analyses, the dependent variable was encoded as 
a binary outcome, represented by 0 and 1. Here, the value 1 indicated an incorrect 
response: “Yes” in the context of subordinate clause probing questions and “No” for 
main clause probing questions.

3.2 Results

In the first analysis examining variance in error rates between subordinate and main 
clause probing questions, we identified significant main effects for Question Type 
(estimate=-4.36, SE=0.18, z=-24.38, p<0.001) and Models (estimate=0.99, SE=0.15, 
z=6.45, p<0.001), along with a significant interaction between Question Type and 
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Models (estimate=0.67, SE=0.15, z=4.36, p<0.001). The analysis revealed that both 
models were more prone to errors with main clause questions compared to subordinate 
clause questions, with GPT-3.5 generating significantly more errors than GPT-4. The 
interaction indicated that GPT-3.5’s higher error tendency was more pronounced for 
main clause questions than subordinate clause questions.

The second analysis focusing on the subordinate questions revealed significant 
main effects of Garden-path (estimate=0.97, SE=0.11, z=9.19, p<0.001), Head Position 
(estimate=0.79, SE=0.10, z=7.61, p<0.001), but no significant main effect of Model 
(p<0.1). Garden-path sentences and early head sentences produced significantly more 
errors than their respective counterparts. Additionally, three significant two-way 
interactions were observed. The Garden-path × Head Position interaction 
(estimate=0.54, SE=0.10, z=5.21, p<0.001) indicated that the head position effect was 
stronger for garden-path than non-garden-path sentences. The Garden-path × Model 
interaction (estimate=-1.04, SE=0.11, z=-9.85, p<0.001) revealed that the garden-path 
effect differed between models: GPT-3.5 showed no significant difference between 
garden-path and non-garden-path conditions, while GPT-4 showed a strong 
garden-path effect with significantly higher error rates in garden-path conditions. The 
Head Position × Model interaction (estimate=-0.26, SE=0.10, z=-2.57, p<0.05) showed 
that model differences were larger for late head sentences than early head sentences. 
Lastly, there was a significant three-way interaction (estimate=-0.20, SE=0.10, z=-2.00, 
p=0.046), which indicated that the Garden-path × Head Position interaction differed 
between models. Specifically, GPT-4 showed a stronger head position effect in 
garden-path sentences compared to GPT-3.5, while both models showed similar weak 
head position effects in non­garden­path sentences.

In summary, both models exhibited significantly lower error rates in main clause 
probing questions, with the rates nearing zero (GPT­3.5: 4.06%, GPT­4: 0.19%). 
Between the two models, GPT­4 demonstrated significantly lower error rates compared 
to GPT­3.5. Additionally, an effect of Garden­path was noted in subordinate clause 
questions, where both models made more errors when the subordinate clause came 
before the main clause rather than after. However, this pattern was more evident 
in GPT­4, with GPT­3.5 showing no significant difference between garden­path and 
non­garden­path conditions. Finally, an early head position led to increased error rates 
in both models, with this effect being stronger in garden­path conditions overall, and 
this enhancement being particularly pronounced for GPT­4 compared to GPT­3.5.
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When compared to human data, LLMs showed several similar patterns. First, both 
humans (Christianson et al. 2001) and models committed fewer errors in answering 
main clause questions. For subordinate clause questions, the incorrect answers 
significantly increased in the garden­path condition than in the non­garden­path 
condition. Additionally, errors were more frequent when the syntactic head appeared 
early in the sentence rather than later, with this effect larger for garden­path conditions. 
Nonetheless, a distinct pattern was observed when analyzing GPT­3.5, which differed 
from the human data. For this model, the error rates for subordinate clause questions 
were similarly high both for garden­path and non­garden­path conditions. 
Furthermore, the error rates for both models were notably higher than humans, as 
similarly observed in Experiment 1, across all four subordinate clause question 
conditions. On the other hand, regarding main clause questions, the models, especially 
GPT­4, which displayed an error rate nearly at zero, tended to have lower error rates 
than those recorded for humans.

Figure 2. Error rates by Question Type, Garden-path and Head Position from Experiment 2 
comparing GPT-3.5, GPT-4, and humans when responding to subordinate and main questions, 

with human data referenced from Experiment 2 in Christianson et al. (2001). GP = 
Garden-Path, NGP = Non-Garden-Path

3.3 Discussion

Experiment 2 addressed three issues identified in Experiment 1: the potential for 
syntactic reanalysis failure, the influence of pragmatic expectations, and the impact 
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of head position. The findings indicated that similar to Experiment 1, LLMs generally 
exhibit syntactic processing that mirrors human patterns but displayed a considerably 
higher overall error rate than human processors. 

First, the results showed that the tendency to incorrectly answer “yes” in 
Experiment 1 might not stem solely from the failure of reanalysis, as LLMs recognized 
“the deer” as the subject of the main clause, evidenced by significantly lower errors 
in main clause probing questions. Moreover, errors in the main clause were almost 
near zero, surpassing human performance. This finding aligns with good-enough 
processing, where initial misanalyses persist despite successful syntactic reanalysis 
(Christianson et al. 2001).

Secondly, the experiment demonstrated that the tendency to incorrectly answer 
“yes” in Experiment 1 might not arise only from pragmatic inference but also from 
initial syntactic difficulties, as shown by a main effect of Garden­path within 
subordinate clause questions. However, the observation of a numerically high error 
rate in non­garden­path sentences (GPT­3.5: 89.63%, GPT­4: 73.00%) indicated that 
pragmatic expectations also played a substantial role in the erroneous responses. 
Human data showed a similar trend, with significantly more errors in garden­path 
conditions, while also revealing error rates close to 50% in non­garden­path conditions. 
This suggests that their errors were likely due to a combination of syntactic misanalysis 
and the pragmatic plausibility of the inference.

Third, the results indicated that the length effect observed in Experiment 1 was 
not merely due to increased phrase length but also related to syntactic structure, as 
demonstrated by the head position effect, aligning with the patterns in human data. 
However, it remains uncertain whether this effect holds the same implications for 
LLMs as it does for humans. Assuming humans mostly process a sentence sequentially 
from its beginning, “the deer” in an early head position is likely to be assigned as 
the object of the verb in the subordinate clause longer than in a late position, possibly 
triggering the head position effect. In contrast, since LLMs process all sentence 
elements concurrently, an early head position does not necessarily entail prolonged 
assignment as the object. Instead, in LLMs, the distance between the verb and the 
target noun might have influenced the results, given the attention mechanism in 
Transformers, which tends to focus on closer words first (Clark et al. 2019), potentially 
causing increased errors in early head positions.

In the comparison of the models in Experiment 2, two key distinctions between 
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GPT­3.5 and GPT­4 were highlighted. First, in the main clause probing questions, 
GPT­4 demonstrated superior performance with almost no errors, compared to 
GPT­3.5. Yet, it is important to note that GPT­3.5 also produced minimal errors 
in the main clause questions, indicating that its errors were not simply due to a failure 
in syntactic reanalysis. Secondly, a notable difference between the two models was 
observed in the issue related to pragmatic expectation. GPT­4 displayed a pattern 
similar to humans, indicating that the incorrect answers in Experiment 1 were due 
to a combination of syntactic misanalysis and the pragmatic plausibility of the 
inference. In contrast, GPT­3.5 showed no difference between garden­path and 
non­garden­path conditions, differing from human patterns, which might suggest that 
a significant portion of its errors could be due to pragmatic inference rather than 
syntactic misinterpretation. Overall, in Experiment 2, GPT­4 demonstrated more 
human­like processing and achieved lower overall error rates compared to GPT­3.5 
in contrast to Experiment 1, where the performance of GPT­3.5 and GPT­4 was nearly 
identical. However, it is noteworthy that GPT­4 still exhibited higher error rates in 
the garden­path conditions of subordinate questions.

4. Experiment 3

Experiment 3, based on Christianson et al. (2001)’s third experiment, employed two 
modifications to the sentence structures used in Experiment 2, specifically designed 
to minimize errors that could arise from pragmatic reasoning.

The first modification involved the introduction of Reflexive Absolute Transitive 
(RAT) verbs into the sentence structures. RAT verbs, typically associated with personal 
hygiene activities such wash, bathe, and shave, are grammatically structured to be 
understood reflexively, in the absence of a direct object. This characteristic 
distinguishes them from Optionally Transitive (OT) verbs such as hunt, used in 
previous experiments. For instance, ‘Mary bathed’ is automatically interpreted as ‘Mary 
bathed herself,’ contrasting with ‘Mary hunted,’ which does not imply ‘Mary hunted 
herself.’ This distinction is crucial for the experiment, as it reduces the likelihood 
of misinterpreting the verb’s object as an unspecified, general object, thereby 
minimizing pragmatic-driven errors.

The second modification was the inclusion of a disambiguating comma after the 
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verb in the subordinate clause. This comma serves as a syntactic signal to avoid 
garden-path misinterpretations, allowing processors to parse the sentence structure 
more accurately from the outset. In contrast to the clause order manipulation used 
in Experiment 2, which could potentially influence focus or memory retention, the 
comma insertion is a minimal intervention that maintains the sentence’s original word 
order and integrity.

In Experiment 2, GPT-3.5 and GPT-4 both showed a high rate of incorrect 
responses in non-garden-path sentences, though these were fewer than in garden-path 
sentences, suggesting that pragmatic reasoning contributed considerably to the errors. 
Furthermore, the lack of a significant difference between garden-path and 
non-garden-path sentences in GPT-3.5 might indicate even stronger influences of 
pragmatic expectations on it. Experiment 3 is designed to determine the extent of 
errors attributable to syntactic misinterpretations after reducing such general reasoning 
with the two specific modifications.

These two modifications also serve as means to explore different aspects of the 
syntactic abilities of LLMs. RAT verbs, which are inherently understood reflexively 
without a direct object, provide a test case. If LLMs do not recognize this reflexive 
usage, we might observe error rates similar to those with OT verbs in the earlier 
experiments. Conversely, a proper understanding and application of this feature by 
LLMs should lead to a reduction in errors for RAT verbs. Furthermore, these changes 
allow for the exploration of how minimal interventions such as the addition of a 
comma can affect the syntactic processing of LLMs. Although LLMs do not process 
sentences in a strictly linear fashion, information about the position of words and 
phrases in a sentence is still crucial for their processing in attention mechanisms 
(Vaswani et al. 2017). Experiment 3 examined how such changes in structure can 
guide the models’ interpretation of sentence structures.

4.1 Method

4.1.1 Models and procedure

The models were the same as those in Experiment 1. The procedure was also identical 
to that of Experiment 1, with the only difference being that each sentence was iterated 
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30 times due to the smaller number of materials.

4.1.2 Materials

Experiment 3 utilized 24 sentences, sourced from Christianson et al. (2001). 12 with 
an OT verbs such as (3) and 12 with an RAT verb such as (4). Each sentence item 
appeared in one of 4 conditions: garden-path, non-garden-path with comma and 
non-garden-path with order shift.

(3) a. While the man hunted the deer that was brown and graceful ran into 
the woods. [OT verbs - Garden-path]

b. While the man hunted, the deer that was brown and graceful ran into 
the woods. [OT verbs – Comma]

c. The deer that was brown and graceful ran into the woods while 
the man hunted. [OT verbs – Order]

d. Question: Did the man hunt the deer?
(4) a. While Jim bathed the child that was blond and pudgy giggled with 

delight. [RAT verbs - Garden-path]
b. While Jim bathed, the child that was blond and pudgy giggled with 

delight. [RAT verbs – Comma]
c. The child that was blond and pudgy giggled with delight while Jim 

bathed. [RAT verbs – Order]
d. Question: Did Jim bathe the child?

4.1.3 Statistical analysis

All statistical analysis procedures were identical to those in Experiment 1 and were 
conducted in two stages. In the first phase, a comparison was made between the 
two non-garden-path conditions to understand how comma disambiguation and clause 
order disambiguation impact the process of disambiguation. The analysis was 
structured in a 2×2×2 factorial design (RAT vs. OT × Comma vs. Order × GPT-3.5 
vs. GPT-4), with Verb Type, Disambiguation, and Model as fixed effects and Items 
as random effects.

The second phase aimed to explore how the type of verb influences the processing 
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of garden-path sentences and how this effect varies across different LLMs. This analysis 
was limited to garden-path sentences and non-garden-path sentences that employed 
comma disambiguation. This model considered Verb Type, Garden-path, and Model 
as fixed effects, with Items as random intercepts, structured in a 2×2×2 factorial design 
(RAT vs. OT × Garden-path vs. Comma × GPT-3.5 vs. GPT-4).

4.2 Results

Figure 3. Error rates by Verb Type, Garden-path and Disambiguation from Experiment 3 
comparing GPT-3.5, GPT-4, and humans. The human data is sourced from Experiments 3a 
and 3b in Christianson et al. (2001), with the error rate for garden-path conditions being an 

average from both 3a and 3b. GP = Garden-Path, NGP = Non-Garden-Path

In the initial analysis phase, we focused on the impact of the comma on interpreting 
non-garden-path sentences. Due to issues with convergence and multicollinearity, the 
model was simplified by removing the three-way interaction. We observed main effects 
for Ambiguity (estimate=-2.12, SE=0.27, z=-7.96, p<0.001), Verb Type (estimate=7.43, 
SE=2.04, z=3.64, p<0.001), and Model (estimate=1.79, SE=0.26, z=6.79, p<0.001), 
indicating more errors with comma disambiguation, OT verbs, and GPT-3.5 compared 
to unambiguous conditions, RAT verbs, and GPT-4, respectively. There were also 
significant interactions between Model and Verb Type (estimate=0.36, SE=0.09, z=3.85, 
p<0.001) and between Model and Ambiguity (estimate=1.27, SE=0.26, z=4.81, 
p<0.001). These interactions suggest that the difference between models is greater for 
OT verbs than RAT verbs, and greater in comma conditions than order conditions.
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In the second analysis, the focus was on how the type of verb influences the 
processing of garden-path sentences across different LLMs. A main effect of 
Garden-path (estimate=13.05, SE=3.93, z=3.33, p<0.001) and a significant interaction 
between Verb Type and Garden-path (estimate=-9.66, SE=3.92, z=-2.46, p<0.05) were 
identified. These effects indicated more errors in garden-path conditions and that verb 
type differences emerged only in comma conditions, where OT verbs produced more 
errors than RAT verbs. Two marginal effects were also found. GPT-3.5 produced more 
errors than GPT-4 (estimate=7.34, p=0.056), and a marginal Verb Type × Model 
interaction (estimate=-7.12, p=0.063) showed that only GPT-4 demonstrated fewer 
errors with RAT verbs.

To summarize, both models exhibited a lower error rate with comma 
disambiguation than with order disambiguation. Furthermore, in non-garden-path 
conditions, both models reduced their error rates with RAT verbs as opposed to OT 
verbs, yet there was no observable difference in error rates between the two verb 
types in garden-path conditions. While the overall performance patterns were similar 
for both models, GPT-4 outperformed GPT-3.5 in non-garden-path conditions. 
Additionally, when comparing the two types of disambiguation, a larger difference 
was noted in the models’ error rate with comma than clause order disambiguation.

Comparing these findings with human data indicates a broadly similar trend. In 
Christianson et al. (2001), humans also demonstrated fewer errors with RAT verbs 
compared to OT verbs, particularly in non-garden-path scenarios, regardless of the 
disambiguation method used. This pattern implies that humans may be less dependent 
on general reasoning, instead following structural guidelines when interpreting RAT 
verbs. However, humans still encountered misinterpretations with RAT verbs in 
garden-path conditions, suggesting a tendency toward persistent misinterpretation. 
Still, both models exhibited more errors than humans in garden-path conditions. The 
effect of commas appeared to be relatively more pronounced in LLMs. GPT-4 showed 
about a 15% difference in error rates between comma and clause order disambiguation, 
which was relatively larger than what was observed in humans. Additionally, GPT-3.5 
exhibited a higher number of errors in clause order disambiguation for RAT verbs 
compared to humans, yet it showed fewer errors in comma disambiguation. However, 
since Christianson et al. (2001) did not conduct a statistical comparison of the two 
disambiguation methods, so this finding should be considered an observed trend. 
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4.3 Discussion

Experiment 3 investigated whether LLMs continue to produce incorrect responses in 
garden-path processing even when sentence modifications are designed to minimize 
errors stemming from pragmatic reasoning.

The findings indicated that despite modifications to reduce pragmatic reasoning 
influences, both LLMs still committed errors in comprehending garden-path sentences, 
mirroring human participants’ behavior. The models exhibited fewer errors with RAT 
verbs compared to OT verbs in non-garden-path conditions, suggesting they could 
adequately interpret and apply the syntactic properties of RAT verbs. However, they 
still encountered significant errors in garden-path sentences with RAT verbs, 
comparable to those with OT verbs, indicating that errors were largely due to lingering 
syntactic misinterpretations.

While the general trend in processing garden-path sentences was aligned with 
human data, LLMs consistently recorded higher error rates than humans. GPT-4 
demonstrated a decrease in errors when handling RAT verb garden-path sentences, 
yet its error rate remained higher compared to humans, who similarly exhibited lower 
error rates in these scenarios.

In the comparison between the two models, both showed comparable patterns, 
yet GPT-4 aligned more closely with human-like processing and incurred fewer 
mistakes overall. Moreover, GPT-4 demonstrated a lower error rate in non-garden-path 
conditions, regardless of the disambiguation types. Hence, while GPT-3.5 utilizes 
linguistic cues such as RAT verbs and commas similarly to GPT-4, it seems to leverage 
these cues less effectively than GPT-4.

5. General discussion

This study explored the intricacies of how GPT models process garden-path sentences, 
drawing a comparison with human syntactic processing to enhance our understanding 
of both machine and human language processing. Our investigation centered on two 
key questions: whether GPT models manifest a human-like ‘good-enough’ processing 
in resolving garden-path sentences, and if a model with superior general linguistic 
performance demonstrates enhanced syntactic processing as well. The answer to the 
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first question is “yes” — LLMs demonstrated ‘good-enough’ patterns akin to humans, 
yielding even higher error rates. Regarding the second question, the answer is only 
partly “yes” as GPT-4 showed overall more human-like performance compared to 
GPT-3.5, particularly in unambiguous conditions, but failed to demonstrate such 
superiority in garden-path conditions. We will explore this in greater detail below, 
organizing the analysis into four distinct sections.

5.1 Similar good-enough processing and the role of probabilistic mechanisms

LLMs demonstrated patterns in processing garden-path sentences remarkably similar 
to humans, producing similar errors as well. LLMs more frequently answered “yes” 
for garden-path compared to non-garden-path sentences, but these errors were not 
due to a failure in reanalyzing ambiguous noun phrases as the subject of the main 
clause and not merely induced by pragmatic inference. Furthermore, human-like 
patterns in error responses influenced by length of ambiguous regions, plausibility, 
head position, and verb type were also observed in LLMs. They made more errors 
in sentences with longer ambiguous regions, higher plausibility, early head positions, 
and with OT verbs. These findings suggest that LLMs showed human-like 
‘good-enough’ processing patterns in handling garden-path sentences.

The observation that LLMs exhibit patterns akin to those of humans, including 
errors, raises questions about the processing nature of both humans and LLMs. The 
similarity in outcomes does not necessarily equate to identical internal structures or 
mechanisms behind these patterns. Particularly, from the perspective that differentiates 
between performance and competence, similar performance levels do not automatically 
indicate similar cognitive or knowledge systems. However, the ability of LLMs to 
mirror certain aspects of human syntactic behavior suggests that at least some facets 
of human syntactic processing might be computationally replicable, without relying 
on the concept of unique syntactic capabilities inherent to humans. 

The core mechanism underlying this computational replicability is probabilistic 
learning through next-word prediction. This essential mechanism has remained 
consistent since the older Simple Recurrent Network (SRN) adapted by Elman (1990), 
which was a pioneering way for neural networks to handle sequential data. It was 
designed to predict the next word based on the current word and the network’s 
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memory of previous words. Transformers, which GPTs are based on (Radford et al. 
2019), also learn by predicting the next item in a sequence and adjusting their internal 
parameters to minimize the error in next-word prediction (Vaswani et al. 2017). 
Certainly, Transformers employ a more advanced approach, or attention mechanism, 
which allows the model to weigh different parts of the input sequence differently, 
taking into account the entire context and not just the recent past. Yet, fundamentally, 
their mechanisms hinge on calculating probabilities through next-word prediction and 
updating these probabilities accordingly (Suresh et al. 2023).

This probabilistic learning mechanism might naturally give rise to good-enough 
processing patterns. When processing garden-path sentences through next-word 
prediction, LLMs form locally coherent structures based on high-probability word 
sequences in their training data. For instance, in “While the man hunted the deer 
ran into the woods,” the sequence “hunted the deer” represents a highly probable 
verb-object relationship. Once formed, these probabilistically-weighted initial 
interpretations persist even when later context (e.g., “ran”) signals the need for 
reanalysis, because the model has already committed substantial computational weight 
to the initial high-probability parse. This might create the characteristic good-enough 
pattern observed in our experiments. Thus, good-enough processing in LLMs emerges 
not as a processing failure but as an inherent consequence of learning and processing 
language through probabilistic constraints.

If probabilistic constraints can account for good-enough processing in LLMs, 
similar mechanisms might underlie human syntactic processing as well. This notion 
of explaining human language acquisition and processing through probabilistic 
constraints or statistical learning is not novel. Bever (1970), who spurred research 
into the processing of Garden-path sentences with the famous “The horse raced past 
the barn fell,” had already introduced the concept of probabilistic constraints and 
an emergentist approach to language development. In the psycholinguistic tradition 
stemming from Bever’s ideas, the statistical patterning of words in language (and other 
nonlinguistic inputs to the cognitive system) is foundational to linguistic competence 
and, indeed, performance. In this tradition, the “meaning” of a word is distilled to 
a statistical analysis of the contexts in which the word appears (Altmann 2013). The 
findings of this study could serve as supportive evidence for this tradition, 
demonstrating that probabilistic learning mechanisms can computationally replicate 
human-like ‘good-enough’ syntactic processing patterns.
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However, while probabilistic learning can explain good-enough processing in LLMs 
and potentially in humans, equating their mechanisms requires careful consideration 
of the vast disparity in input data between LLMs and humans. The evolution of 
language models into LLMs is more than the sophistication of algorithms such as 
the attention mechanism; often considered more crucial is the sheer volume of data 
these models learn from (Kaplan et al. 2020). GPTs utilize the decoder part of the 
Transformers architecture (Vaswani et al. 2017) and there has not been a revolutionary 
change in this structure since GPT-2 (Radford et al. 2019; Brown et al. 2020; Achiam 
et al. 2023). In contrast, the amount of data and the size of models have exponentially 
increased, with GPT-3 known to be trained on billions of data points and parameters 
(Brown et al. 2020), and GPT-4 likely using even more. On the other hand, even 
if humans are assumed to be engaged in language activities around the clock, the 
total exposure to language for one individual in a year would be around 100 million 
words, which is a fraction of what LLMs are exposed to. 

This disparity suggests that even if humans do rely on probabilistic mechanisms 
similar to LLMs, they acquire and utilize probabilistic constraints with remarkable 
efficiency. Humans, particularly infants, demonstrate sensitivity to statistical patterns 
with minimal exposure. For instance, 8-month-old infants can extract statistical 
regularities from continuous speech after only brief exposure (Saffran et al. 1996), 
and young children can make sophisticated inductive generalizations by considering 
both samples and sampling processes (Gweon et al. 2010). This efficiency stands in 
contrast to the massive data requirements of LLMs to achieve comparable good-enough 
processing patterns. The question, then, is not simply whether humans use probabilistic 
learning, but rather what mechanisms enable humans to learn and process probabilistic 
constraints so efficiently. Uncovering the source of this efficiency could provide 
valuable insights for both advancing LLM development and deepening our 
understanding of human cognitive mechanisms.

5.2 Enhanced lingering misinterpretations from locality bias and limited revision

While LLMs displayed patterns similar to humans, they produced more error responses 
in garden-path conditions than humans. This trend was consistently observed across 
all experiments, regardless of verb type, length, head position, or plausibility. Though 
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trained on an overwhelming amount of input with considerable computational power, 
LLMs struggled to overcome misinterpretations caused by garden-path sentences, 
tending to be more error-prone than human processors. This might suggest that LLMs 
either possess certain characteristics that make them more susceptible to garden-path 
effects, or they lack certain human-like features, which help mitigate these errors.

Falling into a garden-path trap occurs when a processor forms a temporally or 
locally coherent structure during sequential processing. In this regard, the occurrence 
of the garden-path effect in LLMs indicates that they are effectively carrying out 
sequential processing and properly forming the locally coherent structure (in this 
experiment, the verb-direct object relationship). However, since LLMs are ‘too’ 
susceptible to garden-path effects, there may be inherent vulnerabilities in how LLMs 
engage in sequential processing and form locally coherent structures.

One possibility is that the unidirectional processing nature of GPTs could heighten 
their vulnerability to garden-path sentences. While RNNs process tokens sequentially 
and must wait for the previous token to be processed before moving on to the next 
(Rumelhart et al. 1986), Transformers such as GPTs process all tokens in a sequence 
in parallel, which is known to incredibly reduce the calculation load of the model 
(Vaswani et al. 2017). However, despite its parallel processing nature, the decoder 
part of Transformers is inherently designed to respect the sequential nature of language 
through the masked self-attention mechanism. This ensures that when calculating the 
representation for a token, the model only incorporates information from preceding 
tokens, thus preserving the sequential flow of contextual information. For example, 
when calculating the contextual information of the word “deer,” the model only uses 
the information from the previous tokens, “While the man hunted the”. In this way, 
Transformers include the mechanisms that allow it to mimic human-like sequential 
processing within a parallel processing framework.

In particular, GPTs differ from BERT and other Transformers by exclusively using 
the decoder architecture with unidirectional processing. While Transformer encoders 
allow bidirectional processing (Vaswani et al. 2017), GPT uses only the decoder, which 
cannot utilize future context in word prediction. This makes GPT processing more 
strictly sequential than human sentence processing. Although human processing is 
generally sequential, eye-movement studies reveal more complex patterns involving 
quick movements, brief stops, occasional text skipping, and regressions to earlier 
sections (Rayner et al. 2005). Compared to this flexible human approach, GPT’s strictly 
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sequential processing may make it more susceptible to garden-path traps.
Another possibility is LLMs’ greater reliance on locality compared to humans. 

The learning method of LLMs, based on next-word prediction, inherently depends 
heavily on the immediate locality, the relationship with nearby words, since the most 
crucial factor in predicting the next word is typically the preceding word. Traditional 
RNN-based language models were known for being heavily influenced by immediate 
past context, which has been highlighted as a significant drawback (Sherstinsky 2020). 
Although Transformers aimed to overcome this limitation through the attention 
mechanism that consider context from all words within a sentence (Vaswani et al. 
2017), this locality bias appears to persist. Clark et al. (2019) indicated that even BERT’s 
attention layers still place significant weight on the information from initial words 
in processing sentences. The results of this experiment could suggest that the 
dependency on locality remains strong in GPTs as well, and its impact may be more 
pronounced compared to humans.

Even if LLMs are more prone to garden-path effects, error responses in these 
experiments would not have emerged if they could effectively recover from such 
misinterpretations. In human sentence processing, initial misinterpretations following 
garden-path effects can impact global comprehension when the first misanalysis fails 
to be completely removed (Slattery et al. 2013). LLMs may be even more susceptible 
to such lingering misinterpretations. In the parallel processing system of the attention 
mechanism, early word processing not only influences subsequent word processing 
but also persists largely unchanged through to the final layer. Due to this mechanism, 
a syntactically coherent structure formed from earlier contexts is nearly unchanged 
when it reaches the final interpretation. Therefore, compared to humans, LLMs might 
be more susceptible to such lingering misinterpretations.

Moreover, the absence of a “revision” process in LLM can exacerbate this issue. 
In human sentence processing, awareness of ambiguity or temporary ungrammaticality 
typically arises upon reaching the main verb (here, “ran”), which triggers reanalysis, 
evidenced by increased reading times or eye-movement regressions (Frazier and 
Rayner 1982; for opposing views, see Christianson et al. 2017). While LLMs might 
be capable of recognizing temporary ungrammaticality in the disambiguation area, 
their ability to revise such errors is likely limited due to their operational mechanisms. 
Particularly, in the case of GPT, due to its unidirectional processing, the model lacks 
information from subsequent words, meaning it cannot correct an already formed 
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incorrect relationship based on later word awareness. Thus, GPT and similar LLMs 
are incapable of performing a “revision” process, which could make them more 
susceptible to lingering misinterpretations.

If the absence of revision significantly contributes to the higher error rates observed 
in LLMs, it may be beneficial to consider designing a mechanism for reanalysis within 
LLMs. As noted, LLMs might be capable of detecting temporary ungrammaticalities, 
and these detections can propagate through subsequent layers, making structural 
reanalysis feasible. For example, BERT, being bidirectional, allows computations that 
occur later in the sentence to influence earlier words, incorporating context from both 
before and after a word in its predictions (Devlin et al. 2019). However, current 
evidence suggests that BERT, despite its bidirectional processing, also remains 
error-prone and does not consistently outperform humans in handling the garden-path 
sentences (Irwin et al. 2023). It appears that merely having bidirectional processing 
does not guarantee actual revision. To effectively facilitate revision, a direct structural 
addition might be necessary to explicitly trigger such processes. In fact, Madureira 
et al. (2024) attempted to design a model that enables such revisions, and their model 
demonstrated an improved capabilities in handling revisions.

5.3 Model comparison and the adaptive value of good-enough processing

Another focus of this study was the comparison of syntactic processing between 
GPT-3.5 and GPT-4. With the transition from GPT-3.5 to GPT-4, there has been 
a notable enhancement in overall language capabilities. The question is whether this 
enhanced ability extends to syntactic processing as well. 

The results indicate that advancements in the models have contributed to better 
syntactic processing capabilities in specific conditions, though not universally. While 
the syntactic processing patterns of GPT-3.5 and GPT-4 were generally similar, GPT-4 
displayed more human-like patterns and committed fewer errors in certain contexts. 
In the processing of unambiguous sentences, GPT-4 consistently outperformed 
GPT-3.5 across all tested experiments, irrespective of the disambiguation methods. 
However, in ambiguous garden-path conditions, GPT-4 did not show clear advantages 
over GPT-3.5. Both models exhibited similarly high error rates in these challenging 
conditions. Furthermore, in some highly ambiguous conditions such as plausible long 
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sentences with OT verbs, GPT-4 actually produced more errors than GPT-3.5, with 
error rates approaching 100%. In sum, improvements from GPT-3.5 to GPT-4 seem 
to benefit syntactic processing selectively rather than comprehensively.

Understanding why these improvements were selective rather than comprehensive 
requires examining what changed between the models. Pinpointing the precise factors 
is challenging, as not all technical details about GPT-4 are publicly available. However, 
it can be inferred that the most substantial improvements likely stem from increases 
in model size and the amount of training data. Since GPT-2, its successors have 
employed the same mechanism of next-word prediction (Achiam et al. 2023) and 
have primarily used the decoder part of the Transformers (Brown et al. 2020). The 
scale of the models and the volume of training data, however, have expanded 
exponentially (Brown et al. 2020). For example, GPT-2 was equipped with 1.5 billion 
parameters (Radford et al. 2019), GPT-3 saw a dramatic increase to 175 billion 
parameters (Brown et al. 2020), and GPT-4 is estimated to exceed 1 trillion parameters 
(Islam and Moushi 2025). According to the scaling laws (Kaplan et al. 2020), the 
performance of LLMs scales as a power law with the size of the model and the dataset, 
while other architectural details have relatively minimal effects. Based on this, our 
discussion will proceed with the assumption that increases in model size or training 
data have been the most critical factors driving the advancements, at least according 
to the most documented and theoretically supported factors.1

These changes in model scale and training data also lead to improvements in 
syntactic processing, but as demonstrated in our experiments, these improvements 
were selective rather than comprehensive. This pattern might reveal insights about 
the limitations of scaling. While larger models brought advances in processing 
unambiguous sentences, they showed persistent difficulties in garden-path conditions, 
suggesting that some aspects of syntactic processing may not improve simply through 

1 Nevertheless, as one reviewer pointed out, performance improvements cannot be attributed solely to 
“larger models and more data.” Although the basic architecture has remained consistent, other factors 
may have also contributed to performance gains, including architectural refinements (e.g., modifications 
to attention mechanisms or normalization techniques), optimization algorithm enhancements, advances 
in post-training methods such as RLHF (Reinforcement Learning from Human Feedback; Christiano 
et al. 2017; Ouyang et al. 2022), and improvements in training data quality and curation (Gunasekar 
et al. 2023). Given the lack of comprehensive technical documentation for GPT-4 (Achiam et al. 2023), 
our discussion focuses primarily on the most documented and theoretically supported factors (scale 
and data) while acknowledging that the actual improvements likely result from a combination of 
multiple technical innovations.
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increased scale. The scaling law itself indicates that performance gains are not infinite. 
As models grow larger, the efficiency of these gains diminishes, following a power 
law relationship rather than linear improvement (Kaplan et al. 2020). This suggests 
that continued expansion beyond GPT-4’s scale may yield progressively smaller 
returns, including for the challenging syntactic structures that have shown some 
resistance to improvement.

Furthermore, increased model size may actually worsen performance in certain 
contexts. Our experiments revealed that GPT-4 exhibited a paradoxical pattern of 
nearly binary responses, with error rates approaching either 0% or 100%. In highly 
ambiguous conditions, particularly sentences combining plausible interpretations, 
longer ambiguous regions, and OT verbs, GPT-4 produced error rates near 100%, 
performing worse than GPT-3.5. These high-error conditions share a common feature 
in that they increase the probabilistic likelihood of forming verb-object relationships. 
Conversely, GPT-4 demonstrated nearly perfect accuracy in minimally ambiguous 
conditions where the probabilistic likelihood of forming incorrect verb-object 
relationships was substantially lower. Combining these findings, it appears that GPT-4 
demonstrated near-maximal errors when probabilistic patterns strongly favored 
garden-path interpretations and near-perfect accuracy when such patterns were 
unlikely.

This binary pattern might suggest a form of over-confidence stemming from 
excessive training data. Broadly speaking from a statistical standpoint, increasing the 
number of observations typically enhances the reliability of the results, reducing 
sampling error and providing a more precise reflection of the entire population. This 
larger sample size consequently narrows the confidence interval, enabling models to 
specify with greater certainty the range within which the true population parameter 
lies. However, a complication arises because language is constantly evolving and there 
is no definitive ‘complete population’ for it. In this context, LLMs might be learning 
from an excessively large input or a huge sample size, which could lead to an undue 
level of “confidence” in their estimations. From a machine learning perspective, this 
could represent a form of overfitting that may not manifest in typical ways during 
training but could lead the models to be overly confident in their language processing, 
when facing novel or ambiguous language data.

As observed in the results of this experiment, this type of overfitting might lead 
to nearly error-free parsing, seemingly providing an advantage in syntactic processing. 
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However, it also rendered GPT-4 more prone to errors compared to GPT-3.5, with 
error rates approaching 100% under several conditions. For instance, plausible long 
sentences with OT verbs typically introduce temporary ambiguity, but GPT-4 
processed these as if there was no ambiguity, likely due to excessive “confidence” 
in the predicted verb-noun phrase relationship. In this regard, too much training data 
can indeed be detrimental in scenarios where sentence structures, while appearing 
highly probable within the constraints of the trained data or existing language data, 
may not be appropriate within the context of newly generated utterances.

Moreover, LLM’s nearly error-free parsing shown in non-garden-path sentences 
might not always be an advantage, given the inherent unpredictability of human 
language, which often includes inaccurate or syntactically incomplete usage (Ferreira 
and Patson 2007). In real-world applications, a degree of flexibility in understanding 
and interpreting language could be more beneficial than presuming ‘100 percent’ 
correctness, as it allows the models to adapt better to the diverse and evolving nature 
of human communication. Additionally, presuming ‘100 percent’ correctness might 
inhibit learning possibilities. If an assumption deemed absolutely correct is later proven 
wrong, a significant weight shift is required, making the process of updating 
probabilities more challenging. In humans, a high subjective confidence rating has 
been reported to hinder word learning by preventing the acceptance of counter 
evidence (Dautriche et al. 2021). While current LLMs are not adaptive learners that 
continuously update as with humans, there is a substantial possibility that this could 
act as a restrictive factor.

GPT-4’s over-confidence paradoxically reveals why human good-enough 
processing exists as an adaptive strategy. While good-enough processing in humans 
might be interpreted as a limitation stemming from cognitive constraints, GPT-4’s 
behavior suggests that maintaining moderate confidence levels may be functionally 
advantageous rather than simply suboptimal. GPT-4 may show what happens when 
probabilistic constraints become excessively strong. This suggests that some degree 
of incomplete reanalysis may reflect a processing strategy that appropriately balances 
accuracy with adaptability. From this perspective, the moderate confidence levels 
characteristic of human sentence processing may be better suited to real-world 
language use than either insufficient processing or the excessive certainty.
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6. Conclusion

This study investigated how advanced LLMs such as GPT-3.5 and GPT-4 process 
garden-path sentences, comparing their syntactic processing to human capabilities to 
improve our understanding of both machine and human language processing. The 
findings reveal that LLMs exhibit similar “good-enough” syntactic processing to 
humans, including making erroneous responses. This similarity suggests that LLMs 
may mimic human processing patterns through their learned probabilistic constraints. 
This might offer support for the theory that human language acquisition and 
processing can be explained through statistical learning, although the vast amount 
of data used to train LLMs necessitates identifying a mechanism that explains the 
high efficiency of human processing. The study also found that LLMs make more 
errors under garden-path conditions than humans. It is possibly due to LLMs’ inherent 
characteristics such as their unidirectional processing nature and greater reliance on 
immediate locality without the ability to revise their responses. Furthermore, GPT-4 
showed selective improvements over GPT-3.5, performing better in unambiguous 
conditions but not in garden-path conditions. This suggests limitations to scaling, 
as increased model size led to overconfidence in highly ambiguous contexts. This 
overconfidence paradoxically demonstrates the adaptive advantage of human 
good-enough processing with moderate confidence levels. To conclude, this study 
aimed to explore the underlying mechanisms of syntactic processing in LLMs using 
a targeted evaluation approach, comparing these mechanisms to those in humans. 
While the study relies on superficial outcomes due to the unavailability of the code 
for LLMs, this method is still meaningful as it provides insights that can contribute 
to our understanding of both human and machine language processing. Future 
research should aim to unveil the yet undiscovered mechanisms of LLMs through 
more sophisticated paradigms, thereby enhancing our understanding of both machine 
and human language.

References

Achiam, Josh, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni 
Aleman, Diogo Almeida et al. 2023. GPT-4 technical report. arXiv preprint arXiv:2303.08774.



574  Jonghyun Lee · Jeong-Ah Shin

Altmann, Gerry T. M. 2013. Anticipating the garden path: The horse raced past the barn ate 
the cake. In Montserrat Sanz, Itziar Laka, and Michael K. Tanenhaus (eds.), Language down 
the garden path: The cognitive and biological basis for linguistic structure, 111-130. Oxford: 
Oxford University Press.

Baayen, R. Harald, Douglas J. Davidson, and Douglas M. Bates. 2008. Mixed-effects modeling 
with crossed random effects for subjects and items. Journal of Memory and Language 59(4): 
390-412.

Bacon, Geoff and Terry Regier. 2019. Does BERT agree? Evaluating knowledge of structure 
dependence through agreement relations. arXiv preprint arXiv:1908.09892.

Bazhukov, Maxim, Ekaterina Voloshina, Sergey Pletenev, Arseny Anisimov, Oleg Serikov, and 
Svetlana Toldova. 2024. Of models and men: Probing neural networks for agreement attrac-
tion with psycholinguistic data. In Libby Barak and Malihe Alikhani (eds.), Proceedings 
of the 28th Conference on Computational Natural Language Learning, 280-290. Miami: 
Association for Computational Linguistics.

Bever, Thomas G. 1970. The cognitive basis for linguistic structures. In John R. Hayes (ed.), 
Cognition and the development of language, 279-362. New York: Wiley and Sons.

Bojic, Ljubisa, Predrag Kovacevic, and Milan Cabarkapa. 2023. GPT-4 surpassing human per-
formance in linguistic pragmatics. arXiv preprint arXiv:2312.09545.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, 
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel 
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel 
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, 
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, 
Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. Advances 
in Neural Information Processing Systems 33: 1877-1901.

Cai, Zhenguang, Xufeng Duan, David Haslett, Shuqi Wang, and Martin Pickering. 2024. Do 
large language models resemble humans in language use? In Tatsuki Kuribayashi, Giulia 
Rambelli, Ece Takmaz, Philipp Wicke, and Yohei Oseki (eds.) Proceedings of the Workshop 
on Cognitive Modeling and Computational Linguistics, 37-56. Bangkok: Association for 
Computational Linguistics.

Chaves, Rui P. 2020. What don't RNN language models learn about filler-gap dependencies? 
Proceedings of the Society for Computation in Linguistics 3(1): 20-30.

Christiano, Paul, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei 2017. 
Deep reinforcement learning from human preferences. Advances in Neural Information 
Processing Systems 30: 4299-4307.

Christianson, Kiel, Andrew Hollingworth, John F. Halliwell, and Fernanda Ferreira. 2001. 
Thematic roles assigned along the garden path linger. Cognitive Psychology 42(4): 368-407.

Christianson, Kiel., Steven G. Luke, Erika K. Hussey, and Kacey L. Wochna. 2017. Why reread? 
Evidence from garden-path and local coherence structures. Quarterly Journal of Experimental 



Good-enough but more error-prone  575

Psychology 70(7): 1380-1405.
Clark, Kevin, Urvashi Khandelwal, Omer Levy and Christopher D. Manning. 2019. What does 

BERT look at? An analysis of BERT's attention. In Tal Linzen, Grzegorz Chrupała, Yonatan 
Belinkov, and Dieuwke Hupkes (eds.) Proceedings of the 2019 ACL Workshop BlackboxNLP: 
Analyzing and Interpreting Neural Networks for NLP, 276-286. Florence: Association for 
Computational Linguistics

Dautriche, Isabelle, Hugh Rabagliati and Kenny Smith. 2021. Subjective confidence influences 
word learning in a cross-situational statistical learning task. Journal of Memory and Language 
121: 104277.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. 2019. BERT: Pre-training 
of deep bidirectional transformers for language understanding. In Jill Burstein, Christy 
Doran, and Thamar Solorio (eds.) Proceedings of the 2019 Conference of NAACL-HLT, 
4171-4186. Minneapolis: Association for Computational Linguistics.

Elman, Jeffrey L. 1990. Finding structure in time. Cognitive Science 14(2): 179-211.
Ettinger, Allyson. 2020. What BERT is not: Lessons from a new suite of psycholinguistic diag-

nostics for language models. Transactions of the Association for Computational Linguistics 
8: 34-48.

Frank, Stefan and John C. J. Hoeks. 2019. The interaction between structure and meaning in 
sentence comprehension: Recurrent neural networks and reading times. Proceedings of the 
Annual Meeting of the Cognitive Science Society, 41: 337-343.

Frazier, Lyn and Keith Rayner. 1982. Making and correcting errors during sentence compre-
hension: Eye movements in the analysis of structurally ambiguous sentences. Cognitive 
Psychology 14(2): 178-210.

Ferreira, Fernanda, and Nikole D. Patson. 2007. The ‘good enough’ approach to language 
comprehension. Language and Linguistics Compass 1(1‐2): 71-83.

Futrell, Richard, Ethan Wilcox, Takashi Morita, and Roger Levy. 2018. RNNs as psycholinguistic 
subjects: Syntactic state and grammatical dependency. arXiv preprint arXiv:1809.01329.

Futrell, Richard, Ethan Wilcox, Takashi Morita, Peng Qian, Miguel Ballesteros and Roger Levy. 
2019. Neural language models as psycholinguistic subjects: Representations of syntactic state. 
In Jill Burstein, Christy Doran, and Thamar Solorio (eds.) Proceedings of the 2019 Conference 
of NAACL-HLT, 32-42. Minneapolis: Association for Computational Linguistics.

Goldberg, Yoav. 2019. Assessing BERT's syntactic abilities. arXiv preprint arXiv:1901.05287.
Gulordava, Kristina, Piotr Bojanowski, Edouard Grave, Tal Linzen and Marco Baroni. 2018. 

Colorless green recurrent networks dream hierarchically. In Marilyn Walker, Heng Ji, and 
Amanda Stent (eds.) Proceedings of the 2018 Conference of NAACL-HLT, 1195-1205. New 
Orleans: Association for Computational Linguistics.

Gunasekar, Suriya, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, 
Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil 



576  Jonghyun Lee · Jeong-Ah Shin

Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam 
Tauman Kalai, Yin Tat Lee, and Yuanzhi Li. 2023. Textbooks are all you need. arXiv preprint 
arXiv:2306.11644.

Gweon, Hyowon, Joshua. B. Tenenbaum, and Laura. E. Schulz. 2010. Infants consider both 
the sample and the sampling process in inductive generalization. Proceedings of the National 
Academy of Sciences 107(20): 9066-9071.

Hauser, Marc D., Noam Chomsky, and W. Tecumseh Fitch. 2002. The faculty of language: 
What is it, who has it, and how did it evolve? Science 298(5598): 1569-1579.

Herbold, Steffen, Annette Hautli-Janisz, Ute Heuer, Zlata Kikteva and Alexander Trautsch. 2023. 
A large-scale comparison of human-written versus ChatGPT-generated essays. Scientific 
Reports 13: 18617.

Hu, Jennifer, Jon Gauthier, Peng Qian, Ethan Wilcox and Roger P. Levy. 2020. A systematic 
assessment of syntactic generalization in neural language models. In Dan Jurafsky, Joyce 
Chai, Natalie Schluter, and Joel Tetreault (eds.) Proceedings of the 58th Annual Meeting 
of the Association for Computational Linguistics, 1725-1744. Online: Association for 
Computational Linguistics

Hunter, John D. 2007. Matplotlib: A 2D graphics environment. Computing in Science 
and Engineering 9(03): 90-95.

Irwin, Tovah, Kyra Wilson, and Alec Marantz. 2023. BERT shows garden path effects. In Andreas 
Vlachos and Isabelle Augenstein (eds.) Proceedings of the 17th Conference of the European 
Chapter of the Association for Computational Linguistics, 3220-3232. Dubrovnik: Association 
for Computational Linguistics.

Islam, R. and O. M. Moushi. 2025. GPT-4o: The cutting-edge advancement in multimodal LLM. 
In Kohei Arai (eds.) Proceedings of the 2025 Computing Conference, 47-60. London: Springer

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, 
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural 
language models. arXiv preprint arXiv:2001.08361.

Kuncoro, Adhiguna, Lingpeng Kong, Daniel Fried, Dani Yogatama, Laura Rimell, Chris Dyer, 
and Phil Blunsom. 2020. Syntactic structure distillation pretraining for bidirectional 
encoders. Transactions of the Association for Computational Linguistics 8: 776-794.

Kuznetsova, Alexandra, Per B. Brockhoff, and Rune HB Christensen. 2017. lmerTest 
package: tests in linear mixed effects models. Journal of Statistical Software 82: 
1-26.

Lee, Jonghyun and Jeong-Ah Shin. 2023. Decoding BERT's internal processing of garden-path 
structures through attention maps. Korean Journal of English Language and Linguistics 23: 
461-481.

Lee, Jonghyun, Jeong-Ah Shin, and Myung-Kwan Park. 2022. (AL)BERT down the garden path: 
Psycholinguistic experiments for pre-trained language models. Korean Journal of English 



Good-enough but more error-prone  577

Language and Linguistics 22: 1033-1050.
Lenth, Russell. 2023. Emmeans: Estimated marginal means, aka least-squares means. R package 

version 1.8.6.
Linzen, Tal and Marco Baroni. 2021. Syntactic structure from deep learning. Annual Review 

of Linguistics 7: 195-212.
Linzen, Tal, Emmanuel Dupoux, and Yoav Goldberg. 2016. Assessing the ability of LSTMs 

to learn syntax-sensitive dependencies. Transactions of the Association for Computational 
Linguistics 4: 521-535.

MacDonald, Maryellen C. 2013. Inviting production to the cognitive basis party. In Montserrat 
Sanz, Itziar Laka, and Michael K. Tanenhaus (eds.), Language down the garden path: The 
cognitive and biological basis for linguistic structure, 131-140. Oxford: Oxford University Press.

Madureira, Brielen, Patrick Kahardipraja, and David Schlangen. 2024. When only time will 
tell: Interpreting how transformers process local ambiguities through the lens of re-
start-incrementality. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.) Proceedings 
of the 62nd Annual Meeting of the Association for Computational Linguistics 1, 4722-4749. 
Bankok:　Association for Computational Linguistics.

Marvin, Rebecca and Tal Linzen. 2018. Targeted syntactic evaluation of language models. In 
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.) Proceedings of the 
2018 Conference on Empirical Methods in Natural Language Processing, 1192-1202. Brussels: 
Association for Computational Linguistics.

McCoy, R. Thomas, Robert Frank and Tal Linzen. 2020. Does syntax need to grow on trees? 
Sources of hierarchical inductive bias in sequence-to-sequence networks. Transactions of 
the Association for Computational Linguistics 8. 125-140.

Orru, Graziella, Andrea Piarulli, Ciro Conversano, and Angelo Gemignani. 2023. Human-like 
problem-solving abilities in large language models using ChatGPT. Frontiers in Artificial 
Intelligence 6: 1199350.

Ouyang, Long, J. Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, 
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, 
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F 
Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow instructions 
with human feedback. Advances in Neural Information Processing Systems 35: 27730-27744.

Qiu, Zhuang, Xufeng Duan, and Zhenguang G. Cai 2025. Grammaticality representation in 
ChatGPT as compared to linguists and laypeople. Humanities and Social Sciences 
Communications 12(1): 1-15.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever. 2019. 
Language models are unsupervised multitask learners. OpenAI Blog 1(8): 9.

Rayner, Keith, Barbara J. Juhasz and Alexander Pollatsek. 2005. Eye movements during reading. 
In Margaret J. Snowling and Charles Hulme (eds.), The science of reading: A handbook, 
79-97. Oxford: Blackwell Publishing.



578  Jonghyun Lee · Jeong-Ah Shin

Rumelhart, David E., Geoffrey E. Hinton and Ronald J. Williams. 1986. Learning representations 
by back-propagating errors. Nature 323: 533-536.

Saffran, Jenny. R., Richard N. Aslin and Elissa L. Newport. 1996. Statistical learning by 
8-month-old infants. Science 274(5294): 1926-1928.

Salverda, Anne Pier, Meredith Brown and Michael K. Tanenhaus. 2011. A goal-based perspective 
on eye movements in visual world studies. Acta Psychologica 137(2). 172-180.

Sherstinsky, Alex. 2020. Fundamentals of recurrent neural network (RNN) and long short-term 
memory (LSTM) network. Physica D: Nonlinear Phenomena 404: 132306.

Slattery, Timothy J., Patrick Sturt, Kiel Christianson, Masaya Yoshida, and Fernanda 
Ferreira. 2013. Lingering misinterpretations of garden path sentences arise from 
competing syntactic representations. Journal of Memory and Language 69(2): 
104-120.

Snowling, Margaret J., Charles Hulme and Kate Nation (eds.). 2022. The science of reading: 
A handbook. Hoboken: John Wiley and Sons.

Suresh, Siddharth, Kushin Mukherjee, Xizheng Yu, Wei-Chun Huang, Lisa Padua, and Timothy 
T. Rogers. 2023. Conceptual structure coheres in human cognition but not in large language 
models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.) Proceedings of the 2023 
Conference on Empirical Methods in Natural Language Processing, 722-738. Singapore: 
Association for Computational Linguistics.

Taloni, Andrea, Massimiliano Borselli, Valentina Scarsi, Costanza Rossi, Giulia Coco, Vincenzo 
Scorcia, and Giuseppe Giannaccare. 2023. Comparative performance of humans versus 
GPT-4.0 and GPT-3.5 in the self-assessment program of American Academy of 
Ophthalmology. Scientific Reports 13: 18562.

van Schijndel, Marten, Aaron Mueller and Tal Linzen. 2019. Quantity doesn't buy quality syntax 
with neural language models. In Kentaro Inui, Jing Jiang, aVincent Ng, and Xiaojun Wan 
(eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language 
Processing and the 9th International Joint Conference on Natural Language Processing, 
5831-5837. Hong Kong: Association for Computational Linguistics.

van Schijndel, Marten and Tal Linzen. 2018. Modeling garden path effects without explicit 
hierarchical syntax. Proceedings of the Annual Meeting of the Cognitive Science Society, 40: 
2603-2608.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, 
Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in Neural 
Information Processing Systems 30: 5999-6009.

Wang, Andrew Y., Sherman Lin, Christopher Tran, Robert J. Homer, Dan Wilsdon, Joanna 
C. Walsh, Emily A. Goebel, Irene Sansano, Snehal Sonawane, Vincent Cockenpot, Sanjay 
Mukhopadhyay, Toros Taskin, Nusrat Zahra, Luca Cima, Orhan Semerci, Birsen Gizem 
Özamrak, Pallavi Mishra, Naga Sarika Vennavalli, Po-Hsuan Cameron Chen, and Matthew 



Good-enough but more error-prone  579

J. Cecchini. 2024. Assessment of pathology domain-specific knowledge of ChatGPT and 
comparison to human performance. Archives of Pathology and Laboratory Medicine 148(10): 
1152-1158.

Waskom, Michael L. 2021. Seaborn: statistical data visualization. Journal of Open 
Source Software 6(60): 3021.

Wilcox, Ethan, Roger Levy and Richard Futrell. 2019. Hierarchical representation in neural 
language models: Suppression and recovery of expectations. In Tal Linzen, Grzegorz 
Chrupała, Yonatan Belinkov, and Dieuwke Hupkes (eds.) Proceedings of the 2019 ACL 
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 181-190. 
Florence: Association for Computational Linguistics.

Wilcox, Ethan, Roger Levy, Takashi Morita and Richard Futrell. 2018. What do RNN language 
models learn about filler-gap dependencies? In Tal Linzen, Grzegorz Chrupała, and Afra 
Alishahi (eds.) Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and 
Interpreting Neural Networks for NLP, 211-221. Brussels: Association for Computational 
Linguistics.

Zhai, Xiaoming, Matthew Nyaaba, and Wenchao Ma. 2024. Can generative AI and ChatGPT 
outperform humans on cognitive-demanding problem-solving tasks in science? Science and 
Education 1-22.

Jonghyun Lee
Assistant Professor
English Studies Major, Divison of Global Studies, College of Global Business
Korea University Sejong Campus
2511 Sejong-ro
Sejong, 30019, Korea
E-mail: j-lee@korea.ac.kr

Jeong-Ah Shin
Professor
Department of English Language and Literature 
Dongguk University
30 Pildong-ro 1-gil, Jung-gu
Seoul, 04620, Korea
E-mail: jashin@dongguk.edu

Received: 2025. 08. 29.
Revised: 2025. 10. 27.
Accepted: 2025. 11. 14.


