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Abstract 

This paper examines how word 
embeddings from large language models 
(LLMs) can be leveraged for corpus-
linguistic studies of co-occurrence. 
Specifically, I examine whether Phrase-
BERT (Wang et al. 2021) representations 
contain information about co-occurrence 
properties of English verbs and nouns, such 
as token frequency, attraction, productivity 
and dispersion, and if so, how Phrase-
BERT can be used alongside such measures 
in corpus-linguistic analyses. I find that (a) 
Phrase-BERT representations partially 
encode information from co-occurrence 
statistics, (b) Phrase-BERT by itself 
predicts quite well whether a verb-noun 
combination is a light verb construction, 
but predictions are further improved by 
corpus statistics and semantic information, 
(c) Phrase-BERT’s predictions as to 
whether something is an LVC can be 
partially explained through corpus statistics. 

1 Introduction 

Co-occurrence is at the heart of both corpus and 
computational linguistics. Both fields are interested 
in exploring forms that regularly co-occur with 
each other to form collocations or multi-word 
expressions. Both began studying co-occurrence 
with similar methods: counting co-occurrence 
between pairs of forms, computing statistics for 
measuring the salience of co-occurrence, and 
choosing the highest-scoring pairs (Dras & 
Johnson 1996, Evert 2005, Tan et al. 2006 etc.). 

Yet the two traditions have parted ways. Modern 
computational linguistics treats the extraction of 
multi-word expressions as a sequence labelling 
problem (e.g. Waszczuk et al. 2019, Taslimipoor & 

Rohanian 2018): Given a sequence of tokens in a 
corpus, how can we label the beginning and end of 
multi-word expressions? The methodology has 
moved beyond statistics to using pre-trained large 
language models (LLMs), which calculate the 
probabilities of strings of tokens using very large 
corpora. 

 Meanwhile, corpus linguistics has further 
developed the traditional method. Rather than a 
single co-occurrence statistic (such as PMI or 𝐺2), 
recent work suggests that co-occurrence properties 
are better captured by suites of statistics that 
operationalise different aspects of distribution with 
different psycholinguistic interpretations (e.g. 
Gries 2022a, 2024, van Hoey 2023). This 
movement towards multi-dimensionality is called 
tuplelisation: it involves gathering combinations, 
or tuples, of corpus statistics. Crucial to this 
development is the realisation that correlation 
between statistics comprising the tuples should be 
minimised, and the introduction of tools to do so 
(Gries 2022b, 2022c). 

Nevertheless, the versatility and accuracy of 
black-box language models remain attractive for 
corpus linguists. For example, while a linguist 
cannot obtain accurate co-occurrence statistics for 
a pair of words involving a word that did not occur 
in the corpus, this is unproblematic if we use word 
embeddings (vector-space representations) based 
on LLMs: word vectors are trained on much larger 
corpora and, in their modern incarnations, can 
handle unseen words, since word embeddings are 
creating by combining embeddings of subwords: 
fragments of words determined by a tokeniser. 

Given the strengths of LLM word embeddings, 
one may ask how to integrate them into the corpus 
linguist’s workflow without sacrificing the 
linguistic interpretability desired in theoretical 

Tupleised co-occurrence measures vs LLM word embeddings 
for corpus linguistics: 

The case of English light verb construction detection 
 
 
 

Ryan Ka Yau Lai 
University of California, Santa Barbara 

kayaulai@ucsb.edu 
 
 
 

mailto:kayaulai@ucsb.edu


 
 
 

corpus-linguistic work, and how it make it work 
alongside traditional corpus-linguistic methods. 
Extensive work has demonstrated that LLM word 
embeddings encode all types of linguistic 
information, from word classes (Belinkov et al. 
2018) to agreement and anaphora (Lin et al. 2019), 
named entities and semantic roles (Tenney et al. 
2019), syntactic structures (Jawahar et al. 2019) 
and, crucially for this paper, constructional 
information (Tayyar Madabushi et al. 2020), 
including filler-slot attraction (Thrush et al. 2020). 
This suggests that LLM behaviour can be pinned 
down to aid corpus-based investigations of 
language use, including co-occurrence. 

 This paper tackles this question through the case 
study of association between verbs and their 
objects in English, particular as regards the 
identification of light verb constructions, 
combinations of a semantically light verb with a 
semantically heavy lexical noun, as such 
constructions are particularly relevant to corpus-
based lexicography and constructicography. LLM-
based word embeddings are taken from Phrase-
BERT (Wang et al. 2021).  

Specific research questions of this paper are: 
1. To what extent do Phrase-BERT embeddings 

of verb-object sequences encode co-
occurrence information between the verb and 
the head noun of the object? 

2. Do tupleised co-occurrence statistics encode 
any information useful for identifying light 
verb constructions not already present in 
Phrase-BERT? 

3. Can tupleised co-occurrence statistics, along 
with semantic and syntactic information, be 
used to interpret how Phrase-BERT predicts 
whether a verb-object sequence is a light verb 
construction? 

Section 2 gives the background information to 
this paper. Section 3 describes the nature of the 
datasets used. Section 4 shows that Phrase-BERT 
embeddings can partially predict tupleised co-
occurrence statistics calculated from the British 
National Corpus (BNC; Leech 1992). Section 5 
examines the detection of light verb constructions. 
It demonstrates that corpus statistics are still useful 
when used alongside Phrase-BERT embeddings 
for LVC detection. It also shows how tupleised 
corpus statistics can help interpret the behaviour of 
a Phrase-BERT-based model of light verb 
detection. 

2 Background 

2.1 Covarying collexeme analysis 

The linguistic phenomenon studied in this paper is 
combinations of verbs and objects within a specific 
construction type in English: active, transitive 
clauses. Thus, it can be regarded as a covarying 
collexeme analysis (Stefanowitsch & Gries 2005): 
We are looking at the co-occurrence of items within 
two constructional slots of a construction. 

2.2 Tupleised co-occurrence statistics 

The corpus statistics used in this paper are mostly 
based on Gries (2022a). Most of the measures are 
calculated using values from the following 
contingency table, where n stands for noun (i.e. the 
object), v stands for verb, and ¬ means ‘not’: 

 𝑛 ¬𝑛 Totals 
𝑣 𝑓(𝑛, 𝑣) 𝑓(¬𝑛, 𝑣) 𝑓( 𝑣) 

¬𝑣 𝑓(𝑛, ¬𝑣) 𝑓(¬𝑛, ¬𝑣) 𝑓(¬𝑣) 
Totals 𝑓(𝑛) 𝑓(¬𝑛) 𝑁 

 
For example, if n is ‘look’ and v is ‘take’, then 

𝑓(𝑛, 𝑣)  is the number of tokens of verb-object 
combinations with take as verb and look as object; 
𝑓(¬𝑛, 𝑣)  is the number of tokens of verb-object 
combinations where the verb is take and the object 
is not look; 𝑓(¬𝑣)  is the number of verb-object 
combinations where the verb is not take; and so on. 
From these numbers, estimated probabilities can be 
calculated: For example, 𝑝(¬𝑛, 𝑣) = 𝑓(¬𝑛, 𝑣)/𝑁 
is the estimated probability that a verb-object 
combination has take as verb and an object other 
than look, and 𝑝(𝑣|𝑛) = 𝑓(𝑣|𝑛)/𝑓(𝑛)  is the 
estimated probability that the verb is take given that 
the object is look. 

Eight corpus statistics will be considered in this 
paper. Firstly, token frequency is simply 𝑓(𝑛, 𝑣). 

The second and third statistics are measures of 
unidirectional association, i.e. how much is the 
noun attracted to the verb, and the verb to the noun? 
For the attraction of the verb to the noun, this is 
calculated using the Kullback-Leibler divergence 
(KLD) between the distribution of the verb given 
the noun and the unconditional distribution of the 
verb. The more dissimilar these two distributions 
are, the more highly the verb is attracted to or 
repelled from the noun: 

𝐾𝐿𝐷(𝑣|𝑛) = 𝑝(𝑣|𝑛) log2
𝑝(𝑣|𝑛)

𝑝(𝑣)

+  𝑝(¬𝑣|𝑛) log2
𝑝(¬𝑣|𝑛)

𝑝(¬𝑣)  



 
 
 

Following Gries (2022a), this value is then 
normalised to fall between 0 and 1, with 0 being the 
lowest attraction and 1 being the highest attraction 
by applying the exponential function to -1 times the 
KLD and then subtracting the result from 1. In 
cases of repulsion, i.e. 𝑝(𝑣|𝑛) < 𝑝(𝑣), a negative 
sign is added in front of the negative KLD, so the 
final quantity ranges from -1 to 1. The formula for 
this value is as follows: 

𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑣|𝑛) = sgn(𝑝(𝑣|𝑛) − 𝑝(𝑣)) × (1
− 𝑒−𝐾𝐿𝐷𝑣→𝑛) 

The attraction of the noun to the verb is 
calculated similarly, just with n and v swapped in 
the formula. For example, in the construction play 
truant, play is highly attracted to truant (high verb-
to-noun attraction), but truant is not highly 
attracted to play (low noun-to-verb attraction), 
since if we know the noun is truant, the verb much 
more likely to be play than most other nouns; but if 
we know the verb is play, it is very hard to guess 
the noun is truant. 

The next four statistics all measure productivity: 
The degree to which verbs can combine with a 
variety of nouns, and vice versa. The fourth and 
fifth statistics are the type frequencies: the number 
of noun types that accompany each verb, denoted 
𝑡𝑓𝑣 , and the number of verb types that co-occur 
with each noun, denoted 𝑡𝑓𝑛 . I take the logged 
values of both, i.e. log(𝑡𝑓𝑣) and log(𝑡𝑓𝑛). 

The sixth and seventh statistics are entropy, 
which measures how unpredictable the noun is 
given the verb, and vice versa. Unlike type 
frequency, this measure also takes into account the 
relative prevalence of different collocates. For 
example, if one noun co-occurs with a single verb 
99% of the time and 99 other verbs the remaining 
1% of the time, its entropy would be nearly 0 even 
though the type frequency is 100. Unlike the 
conventional formula for entropy, the entropy used 
in this paper is normalised, following Gries 
(2022a), such that it cannot exceed 1. For the 
entropy of the verb given the noun, the entropy is 
normalised by the frequency of the noun: 

𝐻𝑛𝑜𝑟𝑚(𝑣|𝑛) =
− ∑ 𝑝(𝑣|𝑛) log2 𝑝(𝑣|𝑛)𝑣

log2 𝑓(𝑛)
 

The entropy of the verb given the noun is similarly 
calculated by swapping v and n in the formula. 

The eighth and final statistic is 𝐷𝑃𝑛𝑜𝑓𝑟𝑒𝑞 (Gries 
2022c). This calculates how evenly distributed the 
verb-object combination is within the corpus. The 

first step in calculating this value is to get the raw 
dispersion statistic DP. To do this, we first calculate 
the proportion of instances of a verb-object 
combination, say take + look, that comes from each 
document in the corpus. We then calculate the 
proportion of verb-object combinations in general 
that comes from each document in the corpus. We 
then find the Manhattan distance between the two 
vectors of proportions. Next, we estimate the 
minimum and maximum values of 𝐷𝑃  given the 
token frequency of take + look. Finally, we 
calculate 𝐷𝑃𝑛𝑜𝑓𝑟𝑒𝑞  by calculating its position 
within the range of possible values: the minimum 
value is 0, the maximum value is 1, and if the DP 
value is halfway between the minimum and 
maximum, then 𝐷𝑃𝑛𝑜𝑟𝑚 is .5, and so on. Details of 
calculation are in Gries (2022c). 

2.3 Light verb constructions 

The particular application of corpus statistics and 
Phrase-BERT in this paper will be focused on the 
identification of light verb constructions (LVCs). A 
light verb construction is a grammatical 
construction consisting of a semantically light verb 
that contributes little to no predicational 
information and a lexical item, generally a 
nominal, which contributes the bulk of the 
information about the event or state being 
described. In English, a typical light verb 
construction consists of a verb followed by an 
indefinite object such as take a peek or do 
backflips. This paper will consider exclusively 
those LVCs that contain a noun. 

Light verb constructions are studied in both 
corpus linguistics and NLP. They are a type of 
multi-word expression of great interest in both 
applied and theoretical linguistics: They are a 
common source of L2 errors because of their 
idiosyncratic properties (e.g. which verbs are 
paired with which nominals) (García Salido 2016), 
and their cognitive representation is a constant 
topic of interest, e.g. in English, they have the form 
of verb-object constructions, yet in some ways 
function like intransitive predicates (e.g. 
Wittenberg & Piñango 2011). It also has 
applications in NLP tasks like event extraction and 
information retrieval (Vincze et al. 2013), since the 
noun in an LVC should be treated as part of the 
predicate, rather than a participant in the event. 
Thus, extracting LVCs from corpora has many 
applications, such as for compiling computer- 
and/or human-readable glossaries of LVCs within 



 
 
 

a domain, for studying the grammatical properties 
of LVCs in L1 and L2 production, etc. 

2.4 Phrase-BERT 

As mentioned above, this paper uses Phrase-BERT 
(Wang et al. 2021) to classify constructions as 
LVCs. The main advantage of Phrase-BERT is that 
unlike most BERT-based approaches to calculating 
phrasal similarity, it is trained on collections of 
paraphrases such that phrases with similar meaning 
but no words in common will have similar 
embeddings, whereas words with overlapping 
words but very different meanings will have 
different embeddings. Thus, Phrase-BERT does 
not rely heavily on lexical overlap between 
phrases, and can better capture similarity between 
phrases that do not necessarily share words. As 
LVCs are a highly abstract category mostly 
characterised by how meaning is distributed in 
different parts of the construction, using Phrase-
BERT can potentially make it easier to detect LVCs 
even if their component words do not appear in 
LVCs in the training data, and avoid mistakenly 
classifying non-LVCs as LVCs just because they 
share words with LVCs. This may be especially 
useful for detecting LVCs in L2 production, which 
may have less lexical overlap with LVCs in L1 
data, but still share the semantic properties of 
LVCs. 

2.5 Related work 

To date, LLMs’ most common uses in corpus 
linguistics are (a) using word embeddings to 
measure semantic similarity, which predates LLMs 
(Desagulier 2019, Tiun et al. 2020, etc.) and (b) 
using outputs generated from LLMs for automatic 
annotation (e.g. Weissweiler et al. 2024, Yu et al. 
2024). Though this paper also uses LLMs to 
produce annotations, it uses word embeddings 
originating from LLM representations as 
predictors, rather than using LLM-generated 
output directly. 

Concerning co-occurrence specifically, Uchida 
(2024) found that ChatGPT produces a collocation 
list that has 42.8% overlap with the list of 
collocations in the Corpus of Contemporary 
American English (COCA) created by selecting all 
collocations with mutual information (a 
bidirectional association measure) over 1, 
suggesting that ChatGPT’s weights may encode 
some knowledge about co-occurrence of words 
(though the collocations may have also come from 

memorising collocation lists and dictionaries in the 
training data, rather than actually analysing co-
occurrence between words). 

In computational linguistics, Kanclerz & 
Piasecki (2022) has reintegrated statistical 
measures into MWE labelling; their approach, 
however, only uses bidirectional association 
measures to create lists of non-MWEs for negative 
training data. Thus, their co-occurrence statistics 
are not tupleised, and word embeddings and co-
occurrence statistics are used at two different stages 
of their system for different purposes; they were 
not directly compared. To my knowledge, no work 
has attempted to compare word embeddings from 
LLMs to tupleised co-occurrence statistics. 

3 Data 

Three data sources were used for this study. 
Firstly, I took the verb-object constructions from 
the British National Corpus annotated by Tu & 
Roth (2011). This dataset includes the verbs make, 
get, do, have, take, give; around half were 
annotated as LVCs and half as non-LVCs. Secondly, 
I took annotations of OntoNotes 4.0 (Weischedel et 
al. 2011) from the latest version of PropBank 
(Bonial et al. 2014), which annotates for LVCs and 
other verb-object combinations. These two datasets 
were combined; to make the two comparable, the 
surrounding context of the LVCs, i.e. words before 
the verb or after the object, were discarded. 
Instances where the noun precedes the verb were 
also ignored. Dependency parses of the LVCs were 
used to extract the presence of dependencies like 
articles (a, an, etc.). An LLM-based 
disambiguation model (Wahle et al. 2021) was used 
to find the WordNet synset corresponding to the 
noun. The lexical file of the synset was then used 
as a semantic feature, dividing the nouns into 
categories like ‘artifact’, ‘cognition’, ‘process’, 
‘substance’, ‘animal’, etc., similar to one of the 
features in Tu & Roth (2011). This dataset will be 
referred to as the LVC dataset. 

For calculation of corpus statistics related to 
verb-noun constructions, the entire BNC was 
parsed using spaCy (Honnibal & Montani 2017) 
and all verb-direct object pairs were extracted. The 
eight statistics were then calculated. This dataset 
will be referred to as the VN dataset. Details of the 
construction of the datasets are in Appendix A. 



 
 
 

4 Experiment 1: Predicting co-
occurrence statistics from Phrase-
BERT embeddings 

The first experiment investigates whether 
information contained in corpus statistics is 
represented in Phrase-BERT in some form. This 
was done by attempting to predict corpus statistics 
from Phrase-BERT embeddings. If Phrase-BERT 
embeddings do contain information on association, 
entropy, etc., then these measures should be 
predictable from Phrase-BERT representations. 

4.1 Methodology 

A neural network (Figure 1) was used to predict co-
occurrence statistics from Phrase-BERT 
embeddings. The model architecture consisted of 
an input layer containing all Phrase-BERT 
embeddings with dropout rate .5, a hidden layer of 
60 units with ReLU activation and dropout rate .2, 
and finally eight output units with linear activation. 
The co-occurrence measures were centred and 
scaled before modelling, and a training-dev-test 
split of 8-1-1 was used. The model was 
implemented in Keras (Chollet et al. 2015). 

4.2 Results & discussion 

Figure 2 plots the predicted values from the neural 
network against the actual corpus statistics. As can 
be seen from the graph, although there are 
considerable deviations between the predicted and 
actual values of the co-occurrence statistics, the 
embeddings do have substantial predictive power 
overall. The mean squared error (calculated on the 
normalised corpus statistics) in the test set was 
.521. Were a curvilinear activation function 
employed, some of the predictions may be even 
more accurate. Moreover, it should be noted that 
some of the noise may come from noise in the co-
occurrence statistics themselves, rather than in the 
ability of the embeddings to predict co-occurrence 

patterns. In sum, embeddings seem to encode 
some, though not necessarily all, of the information 
available in co-occurrence statistics. 

5 Experiment 2: Relative contribution of 
BERT and co-occurrence statistics to 
light verb prediction 

Since Experiment 1 found that word embeddings 
do encode information relevant to co-occurrence, 
one question is whether problems traditionally 
faced by corpus linguists that call for co-
occurrence statistics can be solved by using word 
embeddings alone, or if co-occurrence measures 
still contain independent information that matter. In 

 

Figure 2: Predicted values of the corpus statistics 
using Phrase-BERT embeddings and actual 
values of the eight corpus statistics as calculated 
using the BNC. Only the test set is shown. Dots 
on the diagonal line have exactly equal actual 
and predicted values. The actual and predicted 
values are presented in their original scales, 
rather than the normalised version used in 
modelling. 

 
Figure 1: Architecture of the model used in 
Experiment 1. 

 

Figure 3: Architecture of the model used in 
Experiment 2. 



 
 
 

this section, we will consider the particular 
problem of extracting light verb constructions from 
a corpus. Imagine, for example, that we would like 
to teach light verb constructions in an L2 language 
instruction setting, and would like locate all light 
verb constructions in a set of level-appropriate texts 
to determine which readings would best serve the 
purpose. Would Phrase-BERT alone suffice to 
complete the job, or do we need traditional sources 
of information like co-occurrence statistics? 

To answer this question, in this section, I aim to 
predict whether a phrase is a light verb construction 
from Phrase-BERT embeddings, corpus statistics, 
and both. If Phrase-BERT embeddings perform 
similar to or better than corpus statistics, and using 
both does not constitute an improvement over 
Phrase-BERT alone, then Phrase-BERT already 
contains all the useful information contained in the 
corpus statistics. If, on the other hand, using both 
sources of information is better than using Phrase-
BERT alone, then this implies that corpus statistics 
contain useful information for LVC prediction that 
is not encoded in Phrase-BERT. I also run versions 
of these three models that add WordNet lexical 
files, dependency syntax information, or both, to 
see if any advantage of adding corpus statistics can 
be eliminated when semantic and/or syntactic 
information is added. 

5.1 Methodology 

The model trained in this section aims to predict 
whether a phrase is a light verb construction, based 
on the LVC dataset. Different combinations of 
predictors were used: I trained models using 
Phrase-BERT only, co-occurrence statistics only, or 
both, with syntactic information, semantic 
information, or both.  Note that although both the 
corpus statistics and the Tu & Roth light verb 
judgements used the BNC, the Tu & Roth 
judgements were not involved in the calculation of 
corpus statistics, so there is no information leak. 

The model architecture (Figure 3) consisted of 
an input layer containing the various variables, a 
hidden layer, and a sigmoid output layer for the 
choice between LVC vs non-LVC. Class weights 

were proportional to the reciprocal of the sample 
size of each class. Decision thresholds were tuned 
to maximise F1 using a grid search between 0 and 
1 (exclusive) and a step size of .01. Grid search was 
used to determine the number of hidden layer units 
and dropout rates; all combinations of the values in 
Table 1 were tried, and for each combination of 
variables, I took the hyperparameter combination 
that resulted in the highest F1 in the validation set.  
As with Experiment 1, scaled and centred corpus 
statistics were used, and the training-dev-test split 
was 8-1-1. 

5.2 Results 

Precision, recall, F1 and AUC values of all the 
models trained were shown in Table 2. Phrase-
BERT alone performs substantially better than 
corpus statistics on all metrics. Yet when we 
combine both, the resulting model does better on 
all metrics but recall compared to the model with 
BERT alone. This pattern (adding statistics 
improves most metrics) largely persists even after 
adding syntactic dependencies and/or semantic 
categories to the model, though the model with just 
BERT and statistics remains the best model in 
terms of F1. Thus, co-occurrence statistics contain 
useful information beyond what is encoded in 
Phrase-BERT, syntactic dependencies on the noun, 
and WordNet lexical files. 

Model P R F1 AUC 
BERT 0.937 0.970 0.953 0.955 
STAT 0.910 0.935 0.922 0.835 
BERT + STAT 0.950 0.964 0.957 0.958 
BERT + SYN 0.951 0.958 0.954 0.952 
STAT + SYN 0.898 0.969 0.932 0.846 
BERT + STAT 
+ SYN 

0.953 0.960 0.956 0.958 

BERT + SEM 0.946 0.961 0.953 0.949 
STAT + SEM 0.901 0.961 0.930 0.870 
BERT + STAT 
+ SEM 

0.940 0.972 0.956 0.955 

BERT + SYN 
+ SEM 

0.955 0.948 0.952 0.954 

STAT + SYN 
+ SEM 

0.915 0.955 0.935 0.890 

BERT + STAT 
+ SYN + SEM 

0.951 0.958 0.955 0.956 

Table 2: Results of Experiment 2 based on the test 
set. P = precision, R = recall, F1 = F1-value, AUC = 
area under the curve, BERT = Phrase-BERT 
embeddings, STAT = co-occurrence statistics, SEM 
= WordNet lexical files, SYN = noun modifiers’ 
presence. 

Hyperparameter Values 
# of hidden layer units 15, 30, 45 
Dropout rate for input layer .2, .35, .5 
Dropout rate for hidden layer .2, .35, .5 

Table 1: Hyperparameter values tested. 



 
 
 

5.3 Discussion 

To examine how important corpus statistics were, I 
used a permutation variable importance approach 
on the maximal model. I randomly shuffled the 
values of each of all four groups of variables, and 
examined the impacts on the F1 in the test set. I did 
this reordering 20 times per variable group. As seen 
in Figure 5, the biggest drop in F1 by far came from 
reordering BERT, but reordering corpus statistics 
still resulted in a rather more substantial drop in 
performance than the semantic or syntactic 
variables. This suggests that corpus statistics have 

a small, but still substantial contribution towards 
the predictive power of the model. 

But which statistics exactly are still important in 
this full model, i.e. are not captured by Phrase-
BERT or by the syntactic and semantic properties? 
I repeated the permutation variable importance 
process, but this time shuffling each statistic 
independently, for three models: (a) statistics only, 
(b) statistics with syntax and semantics, (c) 
statistics with BERT, syntax and semantics (Figure 
4). Going from model (a) to (b), there is a drop in 
all of the variables’ importance, but all of them still 
matter, so semantics and syntax only capture a 
small part of the useful information from co-
occurrence statistics. Unsurprisingly, once BERT is 
added, all the statistics’ importance drop drastically, 
though 𝐻𝑛𝑜𝑟𝑚(𝑣|𝑛) remains important. 

To further examine how exactly co-occurrence 
statistics contribute to better predictions in 
qualitative linguistics terms, I qualitatively 
compared the predictions of the full model (c) with 
the model with everything but co-occurrence 
statistics (hereafter the no-stats model). I looked at 
cases in which one model got something wrong 
that the other got right. 

Firstly, I looked at cases of phrases labelled as 
non-LVCs in the original dataset but one of the two 
models judge as an LVC. These cases are especially 
important as the two models differ substantially in 
precision. Phrases that were classified as false 
positives in the full model and true negatives in the 
no-stats model often seem to be mislabelled in the 
original data or edge cases, e.g. take effect or do 
some work (many similar phrases were counted as 
LVCs in the data). On the other hand, if we look at 
the opposite situation – phrases that were false 
positives in the no-stats model but true negatives in 
the full model – there were fewer apparently 
mislabelled items. Instead, many were clear non-
LVCs where the verb is seemingly light (and is 
light in many other contexts), but in the specific 
phrase retains the non-light lexical meaning, e.g. 
made a profound impression (where the verb 
indicates the subject is actually creating something) 
or get credit (where the subject metaphorically 
receives something). In these cases, the useful 
contribution from corpus statistics likely comes 
from the ability to relate the noun to the verb rather 
than considering them separately. For example, get 
is a frequent verb often appearing in LVCs and 
credit is an abstract noun, which are often 
associated with LVCs. So looking at get and credit 

 
Figure 5: Permutation variable importance of the 
four variable groups, as calculated by drop in F1 
after shuffling the relevant variable group. 

 
Figure 4: Permutation variable importance of the 
tupelised co-occurrence statistics in (a) the STAT 
model, (b) the STAT + SYN + SEM model, (c) the 
BERT + STAT + SYN + SEM model. Note that 
the x-axis is different in each graph, with the scale 
of the x-axis in (c) much smaller than (a) and (b). 



 
 
 

separately, one may be tempted to classify this as 
an LVC. But the noun is not strongly attracted to 
the verb (z-score of 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑛|𝑣) = −.21). Out 
of the 815 input variables, the most negative 
Shapley value is 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑛|𝑣) (Shapley value = 
-0.03), suggesting that it was a major factor that 
pushed the maximal model to treat this phrase as 
non-LVC. This suggests such information was not 
encoded as well in Phrase-BERT alone. 

I then examined cases where phrases labelled as 
LVCs in the original dataset were classified as non-
LVCs by one of the two models. Very few phrases 
were false negatives in the full model but true 
positives in the no-stats model. There were no clear 
patterns in phrases that were false negatives in the 
no-stats model but true positives in the full model, 
except that they sometimes have less frequent 
nouns, like booking (seen once training data) or 
injection (seen twice). This is unsurprising given 
that the models are close in terms of recall. 

Of course, these results do not imply that corpus 
statistics are always needed on top of Phrase-BERT 
for LVC classification. I did not consider the 
context surrounding the LVCs, so I do not know 
whether Phrase-BERT better captures surrounding 
contextual information than corpus statistics like 
previous and next word entropy (Zhào et al. 2016). 
Moreover, the workflow for my system requires the 
user to first locate candidate verb-object 
combinations, rather than getting a list of LVCs 
from a raw text corpus; statistics may be hard to use 
in this situation. Still, the results suggest that 
corpus statistics remain relevant in at least some 
situations relevant to the corpus linguist. 

5.4 Follow-up experiment 

Since Experiment 2 found that much of the useful 
information in corpus statistics is found in Phrase-

BERT, one may ask how Phrase-BERT uses this 
implicit co-occurrence information to make 
predictions about LVC membership. To do this, I 
used the syntactic, semantic predictors and co-
occurrence statistics to predict the behaviour of the 
BERT-only model. Again, a neural network with a 
single ReLU hidden layer of 15 units was used, 
with the same dropout rates as Experiment 1. The 
output layer has linear activation, and predicts the 
estimated probability from the BERT-only model, 
with a logit transformation applied to the 
probability so that it can be any real number. 

Permutation variable importance (Figure 7) 
shows that WordNet semantic information is the 
most important, and as before, 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑣|𝑛) , 
𝐻𝑛𝑜𝑟𝑚(𝑣|𝑛) and the type frequencies stand out as 
the most important predictors based on co-
occurrence statistics. To see the exact way in which 
statistical information encoded in Phrase-BERT is 
used to predict light verb construction status, 
partial dependency plots of the relationship 
between the statistics and the prediction of the 
BERT-only model are shown in Figure 6. The 
strongest relationships are: 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑣|𝑛)  (i.e. 
the verb’s attraction to the noun) is positively 
associated with LVC status, while 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑛|𝑣) 
is positively associated for very low values but 
negatively associated elsewhere. These results can 
be interpreted as Phrase-BERT having learnt that in 
LVCs, the verbs are generally strongly attracted to 
the noun, and the nouns are somewhat, but not very, 
attracted to the verb.  The productivity of the noun 
with respect to the range verbs it combines with, as 

 
Figure 7: Permutation variable importance of the 
statistics in the follow-up experiment, as 
calculated by drop in F1 after shuffling the 
relevant variable group. 

 
Figure 6: Partial dependency plots of the six 
statistics in the test set. Note that these are based 
on z-scores, not original values. 



 
 
 

measured by type frequency and entropy, is also 
negatively associated with LVC status. 

These results may be compared to those 
obtained for Tibetan LVCs in Lai (in press). 
However, there are several important differences 
between the two studies. Firstly, in this paper, 
noun-verb combinations are investigated 
regardless of frequency, whereas in Lai (in press), 
only combinations with the highest frequency were 
taken. Secondly, in this study, only verbs that 
appear in at least one LVC are considered, whereas 
Lai (in press) makes no such restriction. 

The relationship between 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑣|𝑛)  and   
𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑛|𝑣) and LVC status is mostly in accord 
with the Tibetan findings. The initial positive 
relationship between 𝐾𝐿𝐷𝑛𝑜𝑟𝑚(𝑛|𝑣)  and LVC 
status found here is absent from the Tibetan study, 
likely because low-frequency noun-verb 
combinations were not considered there. Lower 
entropy of the verb slot given the noun 
𝐻norm(𝑣|𝑛)  and type frequency of the noun 
log (𝑡𝑓𝑛) being associated with LVC status is also 
consistent with the Tibetan findings. In the Tibetan 
study, higher values of 𝐻norm(𝑛|𝑣) and log (𝑡𝑓𝑣) 
were visually found to be associated with LVC 
status (though the statistical test was insignificant), 
contrary to the weak negative association found 
here. This small difference, however, does not 
necessarily indicate a typological difference, as it 
can likely be attributed to the fact that the present 
study excludes verbs that never appear in LVCs: 
such verbs were likely absent from LVCs precisely 
because they appear with fewer nouns, and their 
inclusion would have tipped the scales the other 
way. 

6 Conclusion 

In this study, we showed that a considerable 
amount of information in co-occurrence statistics is 
encoded in Phrase-BERT, though not all. We saw 
that tupleised corpus statistics only do slightly 
worse than Phrase-BERT at predicting whether a 
verb-object combination is an LVC, and moreover, 
the statistics have an independent contribution to 
LVC detection beyond information also encoded in 
Phrase-BERT, mostly coming from 𝐻𝑛𝑜𝑟𝑚(𝑣|𝑛) , 
the normalised entropy of the verb slot for each 
noun. Finally, corpus statistics can be used to 
partially interpret how Phrase-BERT identifies 
LVCs. Indeed, the patterns found through this 
analysis largely accord with findings in Lai (in 

press) for Tibetan, showing that the power and 
robustness of tupleised corpus statistics for LVC 
detection crosslinguistically. Importantly, this 
would not be possible in a traditional single-
statistic approach, which would not capture e.g. the 
fact that noun-to-verb attraction is mostly 
negatively associated with LVC status but verb-to-
noun attraction is positively associated. 

Thus, tupleised corpus statistics can aid in 
interpreting black-box systems and improving the 
performance of such systems when added as 
additional predictors. Tupleisation contributes to 
the lasting relevance of co-occurrence statistics for 
corpus linguists in the age of LLMs. 
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A Details of data extraction 

To create the LVC dataset, Tu & Roth’s data was 
used as-is, with no modifications except replacing 
the underscores with spaces. To extract non-LVC 
verb-object combinations from PropBank, I looked 
for verbs (pos = V), and then looked for an ARG1 
whose constituency tree representation starts with 
(NP in the corresponding proposition. To extract 
LVC verb-object combinations, I looked for verbs 
again, but this time looked for a word labelled 
ARGM-PRR which indicates it is the head of a light 
verb nominal. If this is not immediately adjacent to 
the verb, then the closest word to the ARGM-PRR 
whose constituency tree representation starts with 
(NP is considered the start of the light verb 
nominal. Otherwise, the word itself is considered 
the entirety of the light verb nominal. 

Phrase-BERT representations of the examples of 
the LVC dataset were computed for the string of 
words starting with the verb and ending in the light 
verb nominal, including anything in between, such 
as indirect object pronouns (e.g. throw them a 
curveball). 

The object nominals were dependency-parsed 
and dependents on the object were extracted, 
including a, the, no, some, any, good, this, little, 
more, great and first. The syntax features used in 
this paper are simply Boolean features indicating 
the presence of these words. 

The WordNet lexical files were based on the 
head of the object alone. I used nltk to get the 
synsets corresponding to the head, and then used 
Wahle et al.’s model to find the most appropriate 
meaning given the LVC instance. A sample input is 
as follows: 
question: which description 
describes the word " explanation "           
best in the following context? \ 
descriptions:[  " a statement that 
makes something comprehensible by 
describing the relevant structure 
or operation or circumstances etc. 
", " thought that makes something 
comprehensible ", or " the act of 
explaining; making something plain 
or intelligible " ] 
context: gave us an " explanation 
" . 

I then took the lexical file of the synset whose 
definition was deemed most appropriate. 

To create the VN dataset, sentences were first 
extracted from the HTML version of the BNC. 

Then I used spaCy to dependency-parse and 
lemmatise everything in the corpus. Direct objects 
(dobj) and passive subjects (nsubj:pass) were 
extracted from the corpus along with their verbal 
heads. Statistics were then calculated based on 
extracted verb-object combinations. 


