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Abstract

Advances in vision-language models (VLMs)
have enabled effective cross-modality retrieval.
However, when both text and images exist in the
database, similarity scores would differ in scale
by modality. This phenomenon, known as the
modality gap, hinders accurate retrieval. Most
existing studies address this issue with manu-
ally labeled data, e.g., by fine-tuning VLMs
on them. In this work, we propose a similar-
ity standardization approach with pseudo data
construction. We first compute the mean and
variance of the similarity scores between each
query and its paired data in text or image modal-
ity. Using these modality-specific statistics, we
standardize all similarity scores to compare on
a common scale across modalities. These statis-
tics are calculated from pseudo pairs, which
are constructed by retrieving the text and image
candidates with the highest cosine similarity
to each query. We evaluate our method across
seven VLMs using two multi-modal QA bench-
marks (MMQA and WebQA), where each ques-
tion requires retrieving either text or image data.
Our experimental results show that our method
significantly improves retrieval performance,
achieving average Recall@20 gains of 64% on
MMQA and 28% on WebQA when the query
and the target data belong to different modali-
ties. Compared to E5-V, which addresses the
modality gap through image captioning, we con-
firm that our method more effectively bridges
the modality gap.

1 Introduction

Information retrieval (IR) plays a key role in a wide
range of NLP applications, including web search
engines (Kobayashi and Takeda, 2000) and ques-
tion answering systems (Kolomiyets and Moens,
2011). While traditional approaches primarily fo-
cus on retrieving textual information (Robertson
and Zaragoza, 2009; Karpukhin et al., 2020), there
is a growing interest in retrieving both text and

images to provide richer and more informative re-
sults (Zhou et al., 2024b).

Vision-language models (VLMs), such as
CLIP (Radford et al., 2021), enable both text and
image data to be embedded into a shared represen-
tation space. Although VLMs enable effective text-
to-image retrieval (Radford et al., 2021), it is still
challenging to extract relevant information from a
database that contains both text and images. Specif-
ically, text items often dominate the top-ranked re-
sults even when relevant images exist (Chang et al.,
2021; Liu et al., 2023). This issue is attributed
to the modality gap—a phenomenon in which em-
beddings from different modalities are mapped to
separate regions of the representation space (Liang
et al., 2022). Consequently, data that share the same
modality as the query tend to receive higher similar-
ity scores, regardless of actual relevance (illustrated
in Figure 1).

To address this problem, several approaches have
been proposed. Somemethods address themodality
gap by fine-tuning pre-trained VLMs using paired
datasets consisting of queries and their manually
labeled corresponding text or image data (Fahim
et al., 2024; Eslami and de Melo, 2025). Other
methods for converting visual data into text have
also been introduced, such as E5-V (Jiang et al.,
2024). However, these approaches have shortcom-
ings: collecting human-annotated data is resource-
intensive, whereas image captioning would fail to
preserve necessary visual information in text.

In this study, we propose a retrieval method
that mitigates the impact of modality gap without
manually labeled data or image captioning. The
key idea is to make similarity scores comparable
across modalities by standardizing them using the
modality-specific mean and variance. To estimate
these statistics, we construct pseudo-positive pairs
of unlabeled queries and their most similar texts
or images. We then derive modality-specific mean
and variance from these pairs, which are used to
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Figure 1: Conceptual overview of the modality gap.
Texts and their corresponding images are projected to
distant regions of the embedding space.

standardize similarity scores during retrieval.
To evaluate our approach, we conduct experi-

ments on multi-modal question answering bench-
marks, i.e., MMQA (Talmor et al., 2021) and
WebQA (Chang et al., 2021) with seven pre-trained
VLMs. Our method significantly improves retrieval
performance when the query and the target data
belong to different modalities, achieving average
gains of 64% and 28% in Recall@20 on MMQA
and WebQA, respectively.

Our main contributions are as follows:

• We propose a similarity standardization ap-
proach to mitigate the effect of the modality
gap on multi-modal retrieval.

• Our method improves the retrieval perfor-
mances on two datasets regardless of modali-
ties, compared to E5-V.

• Our method bridges the modality gap without
manually labeled datasets, such as pairs of
queries and their corresponding examples.

2 Related Work

2.1 Multi-Modal Retrieval
Vision-language models (VLMs) have shown re-
markable progress in recent years (Radford et al.,
2021; Jia et al., 2021). These models are typically
trained using contrastive learning to align images
and text in a representation space. Their embed-
dings can be used for retrieval by computing similar-
ity scores with each item in the database (Karpukhin
et al., 2020).

Retrieval tasks involving multiple modalities can
be broadly categorized into two settings (Liu et al.,

2023). Cross modality retrieval refers to settings
in which the query and target belong to differ-
ent modalities, such as text-image or image-text
retrieval. In contrast, multi-modal retrieval as-
sumes that the retrieval database contains data from
multiple modalities—for example, both text and
images—and the goal is to find the most relevant
item regardless of its modality.

While contrastively trained VLMs perform well
in cross modality retrieval tasks (Radford et al.,
2021), their performance in multi-modal retrieval
remains limited. In particular, when both text and
images are present in the retrieval set, these models
often retrieve items only from the same modality
as the query, and fail to retrieve relevant data from
the other modality (Chang et al., 2021; Ross et al.,
2024).

This issue is attributed to the modality gap, a
clear separation between image and text embed-
dings of contrastively trained VLMs. This phe-
nomenon was first studied by Liang et al. (2022),
who showed that it exists even in randomly initial-
ized models and persists throughout contrastive
training. Several causes have been suggested in
prior work, including an information imbalance be-
tween text and image inputs (Schrodi et al., 2025).

2.2 Bridging the Modality Gap
Some approaches attempt to eliminate the modality
gap in VLMs by modifying the contrastive training
process. (Fahim et al., 2024) augment CLIP’s ob-
jective with uniformity and alignment regularizers
to enforce balanced embedding distributions and
eliminate the modality gap. Schrodi et al. (2025)
demonstrated that contrastive learning can mitigate
the modality gap when the training data is balanced
in information content across modalities. Eslami
and de Melo (2025) introduce AlignCLIP, which
adds shared parameters between visual and text en-
coders and an intra-modality separation term to the
contrastive loss. While effective, these methods re-
quire access to manually paired datasets, which can
be expensive or unavailable in real-world scenarios.

Another line of work obtains image embeddings
by leveraging image captions (Liu et al., 2023; Zhou
et al., 2024a,b). These models achieve strong per-
formance in multi-modal retrieval, but rely heavily
on captions. In settings without image descriptions,
retrieval quality deteriorates, indicating limited use
of visual features.

More recently, methods utilizing the vision-
language capabilities of multi-modal large language
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Figure 2: Overview of our proposed method. The modality gap causes irrelevant text to score higher than relevant
images. Our approach addresses this issue by standardizing cosine similarity scores based on modality-specific
mean and variance calculated from pseudo data.

models (MLLMs) have been explored (Jiang et al.,
2024; Zhang et al., 2024b; Lin et al., 2025). For
instance, E5-V (Jiang et al., 2024) prompts its back-
bone MLLM with an image to generate a one-word
summary of it. By using the resulting features to ob-
tain image embeddings, E5-V aligns visual inputs
with the language space, effectively eliminating the
modality gap.

Unlike the existing works that require manually
labeled data or image captioning, our method di-
rectly adjusts similarity scores across modalities
using pseudo-positive examples, eliminating the
need for manual supervision.

3 Task Formulation

Wework on the task of retrieving relevant data from
a multi-modal database that contains both text and
images, given a natural language query.

Formally, let q be a textual query and let D =
Dtext ∪ Dimage denote the retrieval database, where
Dtext and Dimage are sets of textual and visual items
respectively. A pre-trained VLM f encodes both
the query and each item in the database into the
same space. For each candidate d ∈ D, its rele-
vance to the query can be measured by comparing
their embeddings, for example, using cosine simi-
larity: cos(f(q), f(d)).

However, due to the modality gap, similarities
differ in scale between text and image modalities.

Specifically, a text query tends to assign higher
scores to textual candidates than to images, causing
relevant images to appear lower in the ranking.

4 Proposed Methods

In this section, we propose a method that mitigates
the negative impact of the modality gap without
manually labeled data. We first introduce similar-
ity standardization approach as described in Sec-
tion 4.1. Then, we construct pseudo pairs instead
of labeled data, as detailed in Section 4.2.

4.1 Modality-Specific Similarity
Standardization

To bridge the modality gap, we propose a similar-
ity standardization approach with modality-specific
statistics. We standardize the similarity scores be-
tween queries and target information (i.e., positive
examples) using their means and variances com-
puted separately for text targets and image targets.

Let Pm be a set of query-positive pairs where
positive example belongs to modality m ∈
{text, image}. We calculate the mean and variance
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of similarities for each modality as:

µm =
1

|Pm|
∑

(q,d+m)∈Pm

cos(f(q), f(d+m)),

σ2
m =

1

|Pm|
∑

(q,d+m)∈Pm

(cos(f(q), f(d+m))− µm)2,

(1)

where each (q, d+m) ∈ Pm is a query-positive pair.
Using the modality-specific statistics estimated

above, we standardize the cosine similarity between
a query q and a candidate d ∈ D of modality m as:

sim(q, d) =
cos(f(q), f(d))− µm

σm
. (2)

This modality-aware standardization will mitigate
the negative impact of the modality gap on similari-
ties between text and image. Note that the statistics
µm and σ2

m are computed from the pre-collected
dataset Pm and remain fixed regardless of the re-
trieval queries.

4.2 Pseudo Pair Construction
We propose a method for constructing pseudo data
that eliminates the need for manually labeled data.

Let Dm be the subset of the retrieval database
corresponding to modality m ∈ {text, image}, and
let Q denote a set of unlabeled queries. Given a
query q ∈ Q, we extract the most similar item from
Dm for each modality m, and treat it as a pseudo-
positive example of modality m:

d̂+m = argmax
d∈Dm

cos(f(q), f(d)). (3)

By repeating this process for all queries in Q, we
construct a modality-specific pseudo pair set P̂m

for each modality m:

P̂m = {(q, d̂+m) | q ∈ Q}. (4)

P̂m can be used as a substitute for the manually
labeled set Pm in Equations (1). This allows our
method to perform modality-specific standardiza-
tion without relying on any labeled data.

5 Experimental Setup

5.1 Datasets for Evaluation
We evaluate our method on two multi-modal ques-
tion answering datasets: MultimodalQA (Talmor
et al., 2021) and WebQA (Chang et al., 2021).
These datasets are widely used benchmarks for the

(a)MMQA: “Howmany col-
ors are on the Mississippi
flag?”

(b) WebQA: “Are there
more than five pillars on the
front of Grand Palais?”

Figure 3: Examples of positive images for ImageQ in
MMQA and WebQA shown in Table 1.

multi-modal retrieval task (Chen et al., 2022; Liu
et al., 2023; Zhou et al., 2024a,b). In our experi-
ments, we use questions that require retrieving rele-
vant textual passages (TextQ) or images (ImageQ)
in order to answer them. Table 1 shows examples
from each dataset, and Table 2 shows the dataset
sizes.
MultiModalQA (MMQA) (Talmor et al., 2021)
is a benchmark for multi-hop question answering
across multiple modalities, including text, images,
and tables. It is constructed from Wikipedia tables
linked with relevant textual paragraphs and images
via shared entities.
WebQA (Chang et al., 2021) is a large-scale open-
domain question answering dataset that includes
questions paired with corresponding textual pas-
sages or images. The data is collected from the open
web andWikipedia. Following Liu et al. (2023) and
Zhou et al. (2024b), we construct a retrieval corpus
by collecting all images and text passages relevant
to all queries in the WebQA dataset.

5.2 Datasets for Pseudo Pair Construction
Pseudo pairs are constructed independently for the
MMQA andWebQA datasets. We use queries from
the training split of each dataset and sample their
pseudo-positive examples from the retrieval source
of each dataset as illustrated in Equation 3.

5.3 Metrics
We evaluate our methods using Recall@k,
MRR@k, and NDCG@k. All metrics are primar-
ily measured at k = 20. For Recall, we additionally
compute values at k=1, 5, and 100 to examine the
effect of varying k.

5.4 Models
We apply our method to seven pre-trained VLMs
to demonstrate its robust effectiveness. To as-
sess models expected to exhibit a modality gap
due to contrastive training, we include CLIP (Rad-
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Dataset Type Question Positive Example

MMQA TextQ When did “Harry Potter and the Sor-
cerer’s Stone” movie come out?

Harry Potter and the Philosopher’s Stone (released in the
United States as Harry Potter and the Sorcerer’s Stone)
is a 2001 fantasy film directed by Chris Columbus and
distributed by Warner Bros.

ImageQ How many colors are on the Mississippi
flag?

Refer to Figure 3a.

WebQA TextQ What part of the human body does the
nerves in the frontalis muscle serve and
the occipitofrontalis muscle serve?

The frontalis muscle is supplied by the facial nerve and
receives blood from the supraorbital and supratrochlear
arteries. In humans, the occipitofrontalis only serves for
facial expressions.

ImageQ Are there more than five pillars on the
front of Grand Palais?

Refer to Figure 3b.

Table 1: Examples from MMQA and WebQA datasets. Each dataset includes two types of questions: TextQ and
ImageQ, which refer to questions that require retrieving text and images to answer, respectively.

# of dataset Source Query

text image TextQ ImageQ

MMQA 218K 57K 6.7K/721 1.9K/230
WebQA 787K 389K 15K/2.4K 16K/2.5K

Table 2: Numbers of retrieval candidates and queries
in MMQA and WebQA. The numbers of queries are
listed as training/test. Validation data is not used in our
experiments.

ford et al., 2021) (ViT-B/32 and ViT-L/14), Long-
CLIP (Zhang et al., 2024a) (base and large), and
BLIP (Li et al., 2022). We also include Co-
here Embed 3 English (Ross et al., 2024), a high-
performance VLM accessible via API. In addition,
we evaluate E5-V (Jiang et al., 2024), which inte-
grates image captioning via a MLLM. While E5-V
is designed to mitigate the modality gap, we ap-
ply similarity standardization to examine whether
our method can further improve its performance.
The computational resources are provided in Ap-
pendix A.

5.5 Evaluation Conditions

All VLMs are evaluated under the following three
configurations.
(i) Cos: Cosine similarities are simply used for
retrieval.
(ii) Std: Cosine similarities are standardized by our
method with manually labeled data, which is taken
from the training split of each dataset.
(iii) Ours: Cosine similarities are standardized by
our method with our pseudo pairs.

6 Results and Discussions

6.1 Overall Results

Table 3 summarizes the overall retrieval perfor-
mance across seven VLMs on MMQA and We-
bQA datasets. When Cos was applied, four of the
CLIP-based models and BLIP retrieved almost no
relevant results, resulting in near-zero scores on all
evaluation metrics on ImageQ. This suggests that
the modality gap causes irrelevant text passages to
be ranked higher than relevant images, hindering
accurate retrieval.

In contrast, applying our method to these models
significantly improved the performances, achieving
average gains of 64% and 28% in Recall@20 for
MMQA ImageQ andWebQA ImageQ, respectively,
thereby confirming its effectiveness in bridging the
modality gap.

Notably, all models with our method outper-
formed E5-V on ImageQ. These results highlight
the advantage of processing images without any loss
of information, different from the existing works
with image captioning or verbalization. Although
a slight performance degradation was observed on
TextQ, the overall trade-off is favorable with notable
gains on ImageQ.

Cohere Embed 3 and E5-V achieved high per-
formance on TextQ, with approximately 80% in
Recall@20. On ImageQ, they retained a certain
level of performance without our method, achiev-
ing Recall@20 ranging from 40-50% on MMQA
and 10-20% on WebQA. For E5-V, this can be at-
tributed to its strong capability for understanding
textual information through its MLLM backbone,
as well as its architecture that converts images into
text. While the architecture and training details

135



of Cohere Embed 3 are not publicly available, its
performance suggests that it may adopt a similar
architecture or training process to models like E5-V.
When our standardization is applied to these mod-
els, further improvements are observed on ImageQ;
however, it also results in a large drop in TextQ ac-
curacy compared to CLIP-based models and BLIP.
This indicates that the benefit of our method is lim-
ited when the modality gap is already small.

6.2 Severe Impact of the Modality Gap
To examine how the modality gap affects retrieval
performance, we evaluated Recall at various cut-
off values of retrieval on ImageQ. Table 4 reports
Recall@{1, 5, 20, 100} for each model and dataset.

For Cos, increasing the number of retrieved can-
didates had almost no effect—Recall@k remained
around zero even with k = 100. This result clearly
indicates that the modality gap severely degrades
retrieval performance on ImageQ.

In contrast, our method yields substantial im-
provements in Recall@k across all tested values of
k, demonstrating its effectiveness in bridging the
modality gap.

6.3 Pseudo Pairs vs. Manually Labeled Pairs
To assess how pseudo pairs affect retrieval, we com-
pared retrieval performances of the Std method and
our method. Table 3 shows that the results of our
method were equal or higher than those of the Std
method. This result demonstrates that pseudo pairs
can serve as an effective substitute for manually
labeled pairs.

7 Analysis of the Modality Gap

7.1 The Effect of Standardization
To investigate how our method reduced the neg-
ative impact of the modality gap, we analyze the
distribution of standardized similarity scores on
ImageQ. For each ImageQ, we compute the differ-
ence between the average standardized similarity
scores for image and text candidates in the retrieval
database (image mean minus text mean). The dis-
tributions on MMQA and WebQA are shown in
Figure 4, focusing on CLIP (ViT-B/32) as a repre-
sentative model that exhibits a clear modality gap.

In MMQA, the distribution is centered slightly
below zero, indicating that text scores remain some-
what higher than image scores on average, even af-
ter the standardization. In WebQA, the distribution
is concentrated mostly on the negative side (around
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Figure 4: Distributions of the difference between the
average standardized similarity scores of image and text
candidates across ImageQ queries in the training split of
MMQA and WebQA, where the difference is computed
as image minus text.

−4), indicating that text candidates are consistently
scored higher than images. From these results, we
confirm that our method does not fully eliminate
the modality gap.

Nevertheless, retrieval performance improves
significantly as shown in Section 6. We attribute
this to differences in the shape of the cosine simi-
larity score distributions across modalities. Table 5
shows the skewness values in the distributions of
similarity scores. CLIP-based models consistently
produced more positively skewed similarity distri-
butions for image candidates compared to text can-
didates. This suggests that some images receive
totally higher similarity scores than others in the
image database. Such outliers—which often in-
clude the correct images—were amplified by our
method, allowing them to receive a higher standard-
ized score than most text candidates.

We hypothesized that the skewness in the image
similarity distribution stems from the training ob-
jective of CLIP-based models These models learn
to align images with their paired text, but they are
not explicitly trained to capture similarities between
texts or between images themselves. As a result,
these models yield high similarities to a few image
candidates, resulting in a long-tailed distribution.
This skewed distribution might align well with our
standardization approach, as it amplifies the scores
of outliers which often include relevant images.

7.2 Modality Gap in VLMs

We analyze the modality gap in VLMs by investi-
gating both the structure of the embedding space
and the distribution of similarity scores.

Following Liang et al. (2022), we apply singu-
lar value decomposition (SVD) to project the em-
beddings of ImageQ queries and their positive ex-
amples into a two-dimensional space for visualiza-
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Model Method
MMQA WebQA

TextQ ImageQ TextQ ImageQ

Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG Recall MRR NDCG

CLIP (ViT-B/32)
Cos 31.90 26.62 23.90 0.00 0.00 0.00 28.89 21.14 18.89 0.00 0.00 0.00
Std 31.55 25.78 23.25 52.61 36.65 40.32 23.96 16.38 15.01 32.82 15.20 18.02
Ours 27.46 18.44 17.88 66.09 45.03 49.86 27.14 19.07 17.29 28.14 13.79 15.98

CLIP (ViT-L/14)
Cos 35.51 28.63 25.86 1.30 0.41 0.62 32.60 24.05 21.45 0.04 0.00 0.01
Std 35.37 27.60 25.16 62.17 43.32 47.70 28.84 19.37 17.91 43.55 22.54 25.76
Ours 31.28 21.48 20.54 76.52 58.88 63.05 31.27 21.44 19.69 37.10 20.37 22.75

Long-CLIP-B
Cos 58.67 45.11 43.02 0.00 0.00 0.00 43.93 30.92 28.56 0.00 0.00 0.00
Std 54.65 40.73 38.76 66.09 47.67 51.94 34.94 23.79 22.05 33.01 14.92 17.98
Ours 53.33 35.48 35.04 66.96 50.72 54.51 40.44 27.72 25.79 28.59 13.43 15.97

Long-CLIP-L
Cos 63.04 45.56 44.32 0.43 0.11 0.19 45.18 30.36 28.54 0.00 0.00 0.00
Std 58.39 41.94 40.70 71.74 49.38 54.52 35.66 23.57 22.14 39.84 20.22 23.36
Ours 57.07 38.60 38.19 73.91 54.04 58.63 41.46 27.14 25.69 35.34 18.38 21.09

BLIP
Cos 41.75 30.20 28.64 0.00 0.00 0.00 37.15 27.07 24.23 0.00 0.00 0.00
Std 40.92 28.58 27.42 39.57 23.97 27.54 24.00 14.75 14.04 17.62 8.24 9.73
Ours 36.75 23.33 23.31 43.48 27.45 31.15 31.40 20.71 19.23 14.04 6.35 7.62

Cohere Embed 3
Cos 87.17 78.81 74.72 50.43 20.79 27.61 76.52 59.19 55.86 20.43 8.00 10.16
Std 72.19 66.33 60.63 52.17 27.24 32.92 54.78 41.69 38.19 27.42 12.36 14.83
Ours 73.99 63.25 59.20 52.17 28.17 33.61 69.23 52.67 49.36 25.39 11.48 13.73

E5-V
Cos 84.88 66.67 67.20 38.70 17.34 22.06 74.37 54.88 52.27 11.89 5.19 6.37
Std 80.79 63.33 63.56 41.74 21.33 25.91 48.61 35.04 33.11 21.05 9.75 11.50
Ours 70.39 53.15 53.12 41.74 21.55 26.09 65.73 48.76 46.11 18.78 8.87 8.87

Table 3: Overall retrieval results on MMQA and WebQA. Recall@20, MRR@20, and NDCG@20 are reported. Cos
uses cosine similarity as the retrieval score. Std-L and Std-P apply similarity standardization using modality-specific
mean and variance estimated from labeled and pseudo pairs, respectively.

tion. Figure 5 shows the results for CLIP (ViT-B/32)
and E5-V. The visualizations of other models and
datasets are shown in Appendix D. CLIP exhibits a
clear separation between textual queries and posi-
tive image items in the embedding space. In con-
trast, E5-V shows a much smaller gap, suggesting
that modality conversion reduces representational
disparity between text and images.

We then analyze the cosine similarity scores
between queries in the training split of MMQA
and their positive examples (either text or image)
for CLIP (ViT-B/32) and E5-V. Figure 6 presents
the distributions of these scores, separated by the
modality of the positive examples. The distribu-
tions of other models are shown in Appendix E. As
expected, CLIP assigns significantly higher simi-
larities to text examples. E5-V reduces this gap to
some extent, but a consistent score difference re-
mains: image positives still tend to receive lower
similarity scores than text counterparts.

These results indicate that image captioning re-
duces modality differences, but does not fully avoid
the gap of VLMs. One possible reason is that con-
verting images into textual representations leads to
loss of visual information necessary for questions
that are difficult to express in language, such as
the spatial relationships between objects and the
background color. This missing information re-
duces similarities between queries and relevant can-
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(a) CLIP (ViT-B/32)
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Figure 5: 2D visualizations of the embeddings of Im-
ageQ queries in the MMQA training split (blue dots)
and their corresponding images (red dots) using SVD.
Figures 5a and 5b show the results of CLIP (ViT-B/32)
and E5-V, respectively.

didates compared to text data. Our method avoids
this shortcoming. By directly processing image fea-
tures without converting them into text, our method
outperformed E5-V in ImageQ.

8 Conclusion

We presented a method for improving multi-modal
retrieval by bridging the modality gap without
human-created data. Our approach standardizes
similarity scores in a modality-specific manner,
making them more comparable across modalities.
Importantly, it does not require any labeled data
or image captions, as it relies on pseudo-positive
examples derived from unlabeled queries. Through
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Model Method MMQA WebQA

1 5 20 100 1 5 20 100

CLIP (ViT-B/32) Cos 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ours 37.39 53.48 66.09 72.17 8.16 16.11 28.14 44.78

CLIP (ViT-L/14) Cos 0.00 0.87 1.30 3.04 0.00 0.00 0.04 0.06
Ours 50.87 69.57 76.52 81.74 12.90 24.39 37.10 54.76

Long-CLIP-B Cos 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ours 43.91 60.43 66.96 76.96 7.89 16.21 28.59 45.46

Long-CLIP-L Cos 0.00 0.43 0.43 0.87 0.00 0.00 0.00 0.00
Ours 46.09 63.48 73.91 80.87 11.95 21.39 35.34 52.77

BLIP Cos 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ours 21.30 35.22 43.48 56.09 3.78 7.39 14.04 26.66

Cohere Embed 3 Cos 10.00 34.78 50.43 64.78 4.38 9.14 20.43 40.60
Ours 20.43 38.26 52.17 65.65 6.41 13.52 25.39 43.83

E5-V Cos 12.17 23.91 38.70 59.57 2.95 6.35 11.89 26.52
Ours 16.09 28.26 41.74 63.04 5.10 10.49 18.78 36.80

Table 4: Results of Recall@k (k = {1, 5, 20, 100}) for each model on ImageQ queries in MMQA and WebQA
datasets.

Model MMQA WebQA

Text Image Text Image

CLIP (ViT-B/32) −0.81 0.21 −1.05 0.45
CLIP (ViT-L/14) −0.41 0.31 −0.51 0.33
Long-CLIP-B −1.40 0.35 −1.33 0.59
Long-CLIP-L −1.88 0.47 −1.30 0.72
BLIP 0.32 0.37 0.59 0.45
Cohere Embed 3 0.26 0.16 0.54 0.25
E5-V 0.81 0.90 0.91 0.76

Table 5: Average skewnesses of cosine similarity dis-
tributions for ImageQ queries in the training split of
MMQA and WebQA. Each skewness is computed be-
tween a query and all candidates in the text or image
database, then averaged across all queries per modality.

experiments on two multi-modal QA datasets and
seven vision-language models, we demonstrated
that our method consistently improves image re-
trieval performance, particularly in scenarios where
existing models struggle due to the modality gap.
Furthermore, we showed that pseudo-positive exam-
ples are sufficient for estimating modality-specific
statistics, achieving performance on par with manu-
ally labeled data. Our findings highlight the impor-
tance of preserving modality-specific information
and calibrating similarity scores, rather than relying
solely on modality conversion.

Limitations

Our method computes modality-specific similarity
statistics from pre-collected datasets and uses them
to standardize all similarity scores across modal-
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(a) CLIP (ViT-B/32)
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Figure 6: Distributions of cosine similarity scores be-
tween a query and its corresponding positive example (ei-
ther text or image). The distributions are separated by
the modality of the positive example. Figures 6a and 6b
show the results of CLIP (ViT-B/32) and E5-V, respec-
tively.

ities. However, this approach assumes that sim-
ilarity distributions remain stable over time. In
real-world systems, new data is constantly being
added to databases. Due to new content, these pre-
computed statistics may become obsolete, leading
to suboptimal standardization. Future work should
focus on developing mechanisms to dynamically
update these statistics.
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A Computational Resources

We used two NVIDIA Quadro RTX 6000 GPUs
for generating embeddings with E5-V, while only
one GPU was used for all other pre-trained VLMs.
All retrieval and evaluation experiments were con-
ducted using Faiss (Douze et al., 2024) on CPU
only.

B Model List

We evaluated seven pre-trained VLMs in our ex-
periments. Six of them are publicly available on
Hugging Face and were accessed as downloadable
checkpoints:

• https://huggingface.co/openai/
clip-vit-base-patch32

• https://huggingface.co/openai/
clip-vit-large-patch14

• https://huggingface.co/
BeichenZhang/LongCLIP-B

• https://huggingface.co/
BeichenZhang/LongCLIP-L

• https://huggingface.co/Salesforce/
blip-itm-base-coco

• https://huggingface.co/royokong/
e5-v

We used the Cohere Embed 3 English model (co-
here.embed-english-v3) via Amazon Bedrock API
in the us-west-2 region.

C Modality-Specific Mean and Variance

Table 6 lists the modality-specific mean and stan-
dard deviation for similarity standardization that
were used for standardization in our experiments.

D 2D Visualizations of Embeddings

Figures 7–13 illustrate 2D visualizations of embed-
dings of textual queries (from the training sets of
MMQA and WebQA) and their positive examples
using singular value decomposition1.

1Our visualization code is adapted from https:
//github.com/Weixin-Liang/Modality-Gap/blob/
main/Figure_1_Modality_Gap/visualize.ipynb

E Distributions of Cosine Similarity
Scores between Positive Pairs across
Modalities

Figure 14 presents the distributions of cosine simi-
larity scores between textual queries (from the train-
ing sets of MMQA and WebQA) and their positive
examples, separated by the modality of positive
examples.
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Model Method MMQA WebQA
Text Image Text Image

Mean Std Mean Std Mean Std Mean Std

CLIP (ViT-B/32) Std 0.744 0.105 0.314 0.043 0.789 0.093 0.304 0.035
Ours 0.841 0.058 0.315 0.023 0.833 0.063 0.335 0.019

CLIP (ViT-L/14) Std 0.642 0.136 0.280 0.049 0.700 0.122 0.269 0.040
Ours 0.755 0.088 0.271 0.029 0.749 0.093 0.297 0.023

Long-CLIP-B Std 0.879 0.050 0.315 0.031 0.895 0.040 0.307 0.024
Ours 0.898 0.043 0.311 0.017 0.901 0.037 0.324 0.016

Long-CLIP-L Std 0.828 0.068 0.279 0.048 0.856 0.057 0.258 0.037
Ours 0.845 0.073 0.264 0.029 0.860 0.059 0.277 0.026

BLIP Std 0.700 0.116 0.438 0.072 0.724 0.100 0.418 0.059
Ours 0.791 0.070 0.460 0.038 0.806 0.058 0.489 0.034

Cohere Embed 3 Std 0.629 0.121 0.508 0.082 0.581 0.114 0.490 0.066
Ours 0.660 0.105 0.512 0.047 0.615 0.082 0.541 0.044

E5-V Std 0.628 0.102 0.514 0.099 0.635 0.105 0.467 0.084
Ours 0.649 0.095 0.469 0.085 0.640 0.093 0.534 0.073

Table 6: Modality-specific mean and standard deviation used for standardization during evaluation on MMQA and
WebQA datasets. Values are computed separately for text and image modalities, either from labeled or pseudo pairs.
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Figure 7: 2D visualizations of embeddings from CLIP (ViT-B/32).
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Figure 8: 2D visualizations of embeddings from CLIP (ViT-L/14).
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Figure 9: 2D visualizations of embeddings from Long-CLIP-B.
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Figure 10: 2D visualizations of embeddings from Long-CLIP-L.
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Figure 11: 2D visualizations of embeddings from BLIP.
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Figure 12: 2D visualizations of embeddings from E5-V.

142



0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4 Query
Positive

(a) MMQA TextQ

0.3 0.4 0.5 0.6 0.7 0.8

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4 Query
Positive

(b) MMQA ImageQ

0.25 0.30 0.35 0.40 0.45 0.50

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Query
Positive

(c) WebQA TextQ

0.3 0.4 0.5 0.6 0.7

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3
Query
Positive

(d) WebQA ImageQ

Figure 13: 2D visualizations of embeddings from Cohere Embed 3 English.
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Figure 14: Distributions of cosine similarity scores between textual queries in the training split of each dataset and
their corresponding examples (either text or image).
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