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Abstract

Current AI tutoring systems primarily focus on
one-on-one interactions, missing the collabo-
rative dynamics essential for developing com-
munication and social learning skills. We intro-
duce PRISM (Proactive Role-based Intelligent
Scaffolded Multi-agent), a novel framework
that enables natural multi-agent collaboration
in educational settings through autonomous
turn-taking mechanisms. PRISM coordinates
specialized AI agents with distinct pedagogical
roles within a structured four-stage problem-
solving framework based on Pólya’s method-
ology. Our key innovation is a proactive
self-selection mechanism where agents au-
tonomously determine participation through
internal reasoning and evaluative scoring, re-
placing traditional manager-controlled turn al-
location. The performance of the PRISM sys-
tem was evaluated in two distinct experimen-
tal settings focused on high school mathemat-
ics. The initial evaluation involved a simula-
tion benchmark that measured PRISM against
a next-speaker prediction baseline. Assessed
via LLM-as-a-judge metrics, PRISM obtained
a 62.3% win rate over the baseline. A sub-
sequent real-time study of human-agent inter-
action, analyzed using Bales’ Interaction Pro-
cess Analysis (IPA), provided further evidence
of efficacy, demonstrating significant improve-
ments in group coordination and developmental
outcomes for learners. These results indicate
the considerable potential of PRISM as a scaf-
fold for collaborative learning within structured
pedagogical environments. Our framework ad-
vances multi-agent educational AI by provid-
ing measurable learning outcomes, natural in-
teraction patterns, and scalable collaborative
learning environments that preserve the social
benefits of traditional classroom settings.

*Correspondence: tvkhanh@ictu.edu.vn
#These authors contributed equally to this work.

1 Introduction

In recent years, educational technologies have
evolved from rule-based Intelligent Tutoring Sys-
tems (ITS) to powerful large language mod-
els (LLMs) capable of generating context-aware,
human-like dialogue. This shift marks a significant
pedagogical opportunity: Virtual Classroom Sim-
ulation. The user engages with this virtual class
in real-time, participating in group discussions to
solve problems.

To simulate collaborative learning in a structured
and pedagogically meaningful way, we introduce
PRISM, a multi-agent system powered by a large
language model. The system supports a staged
dialogue flow where agents interact with the human
student. Each agent assumes a distinct classroom
role. At each stage, a Stage Manager guides the
flow of conversation, ensuring that the problem-
solving process unfolds coherently.

We evaluate PRISM through experiments involv-
ing Vietnamese high-school students working on
mathematical modeling tasks. Results show that
the system improves group coordination, diversi-
fies student-agent interaction, and enhances the
depth of problem understanding. Our contributions
include:
• A pedagogically-motivated, stage-based dialogue

management framework that enforces structured
collaborative phases aligned with learning objec-
tives.

• A role-driven multi-agent architecture in which
each agent embodies a distinct instructional per-
sona to diversify support.

• A proactive, self-selecting turn-taking mechanism
enabling agents to autonomously decide when to
speak based on internal reasoning and conversa-
tional context.

• Comprehensive empirical validation, including
both simulation-based benchmark comparisons
and a human–agent user study, demonstrating
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significant gains in pedagogical alignment and
learner engagement.

2 Related Work

2.1 LLMs for Education

The release of ChatGPT in 2022 introduced a new
era in education, shifting from traditional NLP to
powerful transformer-based LLMs. Today, these
models are widely accessible, enabling automated
content creation, real-time feedback and grading
at scale, and truly personalized learning experi-
ences (Wang et al., 2024). LLMs can role-play his-
torical figures or conversational partners to foster
immersive, engaging lessons (Zhu et al., 2025). Re-
searchers even use LLMs to simulate student behav-
ior, comparing their error rates on multiple-choice
questions to those of real learners, to generate
high-quality assessments (Liu et al., 2025a).

2.2 One-to-one Tutoring

One-to-one tutoring using AI systems, especially
those powered by LLMs, leverages various peda-
gogical strategies to enhance learning outcomes
(Gousopoulos, 2024; Razafinirina et al., 2024).
While one-to-one tutoring offers personalized at-
tention, it faces challenges in simulating the full
spectrum of classroom interactions. One-to-one set-
tings often miss peer learning opportunities, which
are crucial for social development and collabora-
tive skills. In contrast, traditional classrooms foster
peer interactions that enhance learning through dis-
cussion and shared problem-solving. These limita-
tions highlight the need for a more comprehensive
approach to simulate realistic learning experiences.

2.3 Virtual Classroom – Collaborative
Learning

Multi-agent Systems (MAS). In a virtual classroom
context, agents can be designed with various roles,
such as classmates or teachers, collaborating with
real students toward shared learning goals. MAS
based on Large Language Models (LLMs) has
emerged as a potential solution to this challenge,
thanks to their capabilities in reasoning, decision-
making, and flexible coordination among agents.

Turn-takings in Multi-Party Conversations. Stud-
ies such as SimClass (Zhang et al., 2024)
and MathVC (Yue et al., 2025) have proposed
Next-Speaker Prediction, an approach to manag-
ing turn-taking. This method is based on the his-
tory and role descriptions of agents to select the

most suitable agent to talk to. However, this ap-
proach leaves agents in a passive position when
they are selected by another manager agent. In
reality, when people talk to each other, they will
think independently before speaking. Therefore, a
more comprehensive solution is needed to simulate
this multi-participant conversation to increase the
naturalness of communication.

3 Methodology

3.1 Overview
This study aims to design AI agents that can collab-
orate with human students in solving mathematical
problems while simultaneously enhancing learn-
ing engagement. The proposed system employs a
multi-agent architecture where each agent exhibits
distinct roles and behaviors, allowing for diver-
sified perspectives and pedagogically meaningful
interactions. The overall goal of this work is to
shift from traditional one-on-one tutoring models
toward dynamic, group-based learning enhanced
by autonomous agents.

To fulfill these goals, the system incorporates
three key design requirements:

• Context Awareness: Agents need to be
aware of the environment (conversation, par-
ticipants) to enable realistic collaboration
throughout the various stages.

• Turn-taking Autonomy: Agents should pos-
sess full autonomy in deciding when to act,
yielding more natural, without relying on
fixed sequences.

• Customizability: The system should support
configurable roles, allowing adaptive and en-
gaging user experiences.

To implement these design principles, we con-
struct a three-module architecture based on an
event-driven framework (see Figure 1).

3.2 Event-Driven Architecture
In traditional one-to-one chatbot systems, an
agent’s response is triggered by a new message
from the user. However, when multiple agents op-
erate simultaneously in a shared dialogue space, a
more sophisticated and flexible mechanism is re-
quired to govern agent participation. To address
this, we adopt an event-driven architecture that en-
ables agents to respond dynamically based on con-
textual cues in the conversation environment.
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Figure 1: System Architecture Overview of PRISM, showing how multi-agent collaboration is managed through an
event-driven pipeline. Upon a new event (like new-message) (1), the Stage Manager Agent determines the current
stage (2), providing information to classmate agents. Based on information about roles, conversation history, inner
thoughts (3), classmate agents create inner thoughts in parallel and independently (4); and undergo a self-selection
process based on thought evaluation scores (5) to determine the next speaker agent (6). The selected agent will then
make the next utterance based on the thought just generated.

3.2.1 Environment context
The system environment comprises the complete
chat history, the current instructional stage, the list
of participants, and temporal elements such as the
timing between messages.

3.2.2 Events as interaction triggers
Just as humans respond to spoken words, gestures,
or moments of silence in conversation, AI agents
are designed to react to discrete events within the
system. In this implementation, we define two
primary categories of events:

• New Message: Triggered whenever any par-
ticipant sends a message.

• Silence: Triggered when no participant sends
a message for a predetermined duration (e.g.,
10 seconds). This allows agents to take initia-
tive during moments of inactivity unless the
dialogue session has concluded.

3.2.3 Shared event timeline
Events are appended to and appear in a shared
timeline, providing a single sequence of activities
that all agents reference. This ensures that their

behaviors and interactions remain consistent and
synchronized.

3.3 Stage Module
Pedagogical Approaches. Collaborative problem-
solving is most effective when structured into clear
stages with defined tasks and shared goals, and it
tends to be more effective than simply having the
tutor give direct answers to students. This approach
can enhance student engagement and positively
influence learning outcomes.

To operationalize this in a pedagogical frame-
work, we draw from George Pólya’s classic four-
step model in How to Solve It (Pólya, 1945):

• Stage 1 – Understanding the Problem

• Stage 2 – Devising a Plan

• Stage 3 – Carrying Out the Plan

• Stage 4 – Looking Back

Our system follows a four-stage approach as the
backbone of the instructional flow, during which
students engage in collaborative discussions to
achieve the specific objectives of each stage.
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Stage Manager Agent. To create realistic con-
versations, a collaboration stage manager agent is
responsible for continuously monitoring predefined
criteria specific to each stage. This agent dynami-
cally determines when the objectives of the current
stage have been sufficiently met. Each stage is de-
signed with its own set of tasks, carefully crafted
to align with the stage’s goals, ensuring that the
dialogue progresses logically and purposefully. To
avoid agents directly stating the solution or dis-
cussing the wrong order of a task, all tasks will be
marked as complete or incomplete. The stage man-
ager uses the Chain of Thought (CoT) prompt to
analyze the situation and decide to update the status,
thereby ensuring the simulation remains coherent
and goal-oriented throughout its progression.

3.4 Role-Based Agentization Module

Classroom interaction behaviors can be categorized
based on widely accepted pedagogical principles
(Schwanke, 1981), like: Teaching and Initiation
(TI), In-depth Discussion (ID), Emotional Compan-
ionship (EC), and Classroom Management (CM).
Ensuring diversity and comprehensive coverage of
these agents in the classroom is essential.

Design. This work draws on agentic design prin-
ciples inspired by the CrewAI platform (Moura,
2025), which supports the creation of specialized
AI personas capable of effective collaboration. The
core principles of effective agent design are:

Role-Goal-Backstory Framework.

• Role: Defines an agent’s specialized role
and expertise, aligned with real-world profes-
sional knowledge.

• Goal: guides the agent’s actions and informs
its decision-making process. It should be ex-
plicitly stated, outcome-oriented.

• Backstory: Adds contextual depth by defining
the agent’s expertise, style, and interests in
line with its role and goals.

Crafting Effective Tasks.

• Task Description: The description of tasks,
functions, or tools focuses on what to do and
how to do it.

• Expected Output: The expected output should
define what the final result should look like.

3.5 Turn-Taking Module

Challenges of Turn-taking in Multi-party Dialogue.
In multi-agent educational dialogues, deciding who
“speaks” next is a fundamental challenge. Unlike
one-on-one chatbot systems, multi-party conversa-
tions demand agents to make more autonomous and
context-aware decisions about when to speak, what
to say, and whether to remain silent. Moreover,
the next speaker in a multi-party conversation may
be explicitly selected (e.g., mentioned directly in a
prior message, such as “Hey Charlie!”); if not, any
participant who finds it relevant may take the turn,
or the current speaker may continue. Such flexibil-
ity makes turn-taking particularly challenging for
AI agents.

Limitations of Next-Speaker Prediction. One
common method is next-speaker prediction, where
a manager agent selects the next speaker based on
dialogue history and stage context. This approach
(as used in SimClass (Zhang et al., 2024)) sim-
plifies management but reduces agent autonomy.
Agents act only when selected, limiting their ability
to reflect internal reasoning or motivation. Further-
more, these systems are typically based on static
agent profiles, which fail to reflect the evolving na-
ture of real human behavior over time (Nonomura
and Mori, 2024).

Proactive Turn-taking via Self-Selection. To ad-
dress this, we adopt a proactive turn-taking mech-
anism inspired by how humans participate in con-
versation. After every conversational event (e.g.,
a new message or a pause), each agent privately
generates an internal thought, deciding whether
to speak or remain silent, based on the preceding
dialogue, their designated role, and their internal
memory (previous thoughts).

These thoughts are then passed to a dedicated
agent called the Evaluator, who performs a scoring
process on each submitted thought. The evaluation
considers both internal and external criteria (Liu
et al., 2025b):

• Internal: “Relevance” (Agents contributed
most when discussions matched their knowl-
edge, roles, or recent thoughts); “Expected
impact” (Agents shared insights to intro-
duce ideas, steer the discussion); “Urgency”
(Agents step in during situations such as cor-
recting critical errors, clarifying major mis-
understandings, preventing conversational de-
railment...).
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• External: Coherence (Agents prioritized
thoughts that logically connected to the prior
utterance); Redundancy (Agents avoid repeat-
ing points already made); Balance (Agents
monitored their own participation relative to
others, striving to encourage quieter partici-
pants to speak).

Each score is further adjusted based on how long
the agent has remained silent, incorporating a moti-
vation decay factor to simulate conversational drive.
If an agent’s adjusted score exceeds a threshold,
they are selected as the next speaker.

3.6 System Implementation

To make the PRISM framework concrete, we imple-
mented it as a web-based group chat application. A
human learner joins a shared text chat with three AI
agents that assume different pedagogical roles. All
participants exchange short natural-language mes-
sages in real time, displayed in a single interface
similar to common messaging platforms. Interac-
tion is purely text-based; no speech synthesis or
voice interface was used.

Each AI agent is powered by Gemini Flash 2.0
via the Google API, with customized role prompts
specifying its backstory, goals, and responsibilities.
All dialogue in our experiments was conducted in
Vietnamese to align with the target high-school
mathematics tasks, although the system design is
language-agnostic. Agents generate their internal
“thoughts” in parallel after every conversational
event, which are then evaluated and scored to de-
termine which agent speaks next. The selected
utterance is posted to the group chat, visible to the
student.

This design makes PRISM directly usable as an
interactive software prototype while also preserv-
ing transparency of the underlying mechanisms for
reproducibility and further research (see Figure 2).

4 Experiments

In this section, we detail the experimental method-
ology used to evaluate the PRISM system. We con-
ducted two complementary studies: a simulation-
based evaluation to measure performance against
a baseline (SimClass), and a human-in-the-loop
study to assess the system’s real-world pedagogical
impact.

4.1 Experimental Setup
4.1.1 Simulation Study
To benchmark our model’s conversational capabili-
ties, we generated a synthetic dataset of simulated
conversations tailored to specific objectives or sce-
narios to assess the capabilities of conversational
agents. The conversation will be created first as a
context, then a few agent turns will be created for
evaluation. For a conversation between students
solving a math problem, we chose eight types of
tasks to create an assessment scenario, see Table 1.

Table 1: Definition of simulation-based tasks

Tasks Description
Error Propaga-
tion

The agent must detect and flag
a mistake introduced by a peer.

Self-Correction The agent must correct its own
error when challenged.

Self-Affirmation The agent must defend its cor-
rect reasoning against peer dis-
agreement.

In-depth Discus-
sion

The agent must provide de-
tailed, relevant explanations.

Emotional Com-
panionship

The agent must provide socio-
emotional support.

Classroom Man-
agement

The agent must intervene to
maintain focus or order.

Context Memory
Recall

The agent must accurately re-
member prior conversation de-
tails.

Role Division
Recall

The agent must remember
its own and others’ assigned
roles in solving problems (e.g.,
Agent A handling learning the-
ory, Agent B performing cal-
culations).

We produced a total of 84 dialogue samples (10-
11 per task) for this experiment. Each sample con-
sisted of a nine-turn context prompt and a target
tenth turn for generation.

4.1.2 Human-Agent Study
To observe real-world interactions, we ran a con-
trolled “group study” session involving:

• Participants: Three AI agents with special-
ized personas (Bob: Process Leader; Alice:
Content Expert; Charlie: Social-Emotional
Specialist) and one human learner (Tom, a
high-school student). A human learner with
different personas (e.g., personality, academic
level) will engage in discussions with class-
mate agents on a set of 12th-grade problems.
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Figure 2: Screenshot of the PRISM interface. The system is implemented as a group-chat style environment. The
central panel shows the conversation, with the learner’s messages in blue and the AI agents’ messages in grey. The
right-hand sidebar lists the participants (e.g., the human learner and the three pedagogical agents: Bob as Process
Leader, Alice as Content Expert, and Charlie as Social-Emotional Specialist), as well as session statistics and task
progress. A message input bar is placed at the bottom, and the session header with controls (e.g., start new session)
is at the top. All interactions are text-based.

• Data Collection and Processing: The en-
tire dialogue was recorded. We used the
well-established Bales’ Interaction Process
Analysis Framework (IPA) (Bales, 1950) to
perform collaboration analysis for each turn
of the dialogue. The IPA framework clas-
sifies interactions into 12 categories, which
are grouped into two main categories: the
Social-Emotional Area (Shows solidarity,
Shows tension release, Agrees, Shows dis-
agreement, Shows tension, Shows antago-
nism) and the Task Area (Gives suggestion,
Gives opinion, Gives information, Asks for
orientation, Asks for opinion, Asks for infor-
mation).

For this experiment, we collected 100 multi-
party conversations, each with nearly 85 turns on
average, where participants collaboratively solved
12th-grade math problems with AI agents.

4.2 Evaluation Metrics
We employed a hybrid set of metrics to capture
system performance.

4.2.1 Simulation Metrics
To benchmark PRISM, we compared it against a
next-speaker prediction baseline. In this baseline,
the proactive self-selection mechanism is replaced
with a prompt that directly predicts the name of the
next agent to speak. Following SimClass (Zhang

et al., 2024), the prompt input includes the dialogue
history, the current stage of the mathematical prob-
lem, and the role descriptions of each agent, while
the output is the predicted agent name. The role,
goal, backstory, and tasks of the agents remain iden-
tical in both systems to ensure a fair comparison.

We evaluate the two systems using the following
metrics:

• Win/Draw/Loss Rate: Using an LLM-as-
Judge, we performed a head-to-head compari-
son between PRISM’s generated response and
that of the next-speaker prediction baseline
for each simulation sample.

• Turn Quality Score: Three independent
LLM evaluators scored each generated turn
on a 1-10 scale for correctness, relevance, role
consistency, and reasoning quality. We report
the average score per task.

4.2.2 Human-Agent Study Metrics
• Role Adherence Analysis: To measure per-

sona fidelity, we first defined a theoretical
“ideal” behavioral profile for each AI agent
based on its pedagogical role. We then quan-
titatively compared the observed frequency
distribution of each agent’s communicative
acts against these theoretical profiles to assess
adherence.
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• Dynamic Behavior Balance: To visualize the
group’s interaction flow, we assessed adher-
ence to Bales’ Equilibrium Hypothesis. This
hypothesis posits that effective groups main-
tain stability by shifting their focus over time:
they begin with a high concentration on task-
oriented behaviors and later increase their
socio-emotional interactions to manage rela-
tionships and ensure cohesion (Bales, Robert
Freed, 1953). We first measured this by clas-
sifying communication turns into appropriate
IPA categories, and then plotting these macro-
categories over the sequence of turns using a
stacked area chart with a rolling window (see
Figure 4).

• Learner Scaffolding Effect: We group IPA
items 4–6 (Gives suggestion, Gives opin-
ion, Gives orientation) as Guiding Cognitive
Scaffolds, which provide direct guidance and
demonstrate ways to approach the task; items
7–9 (Asks for orientation/opinion/suggestion)
as Questioning Cognitive Scaffolds, which
prompt learners to think and explain their rea-
soning; and items 1–3 (Shows solidarity, Ten-
sion release, Agreement) as Affective Scaf-
folds, which maintain motivation and confi-
dence. Cognitive scaffolding here covers both
guiding and questioning forms (IPA 4–9), and
collectively supports learners’ cognitive pro-
cesses, providing direct guidance and prompt-
ing reflection. For each agent, the conversa-
tion timeline is divided into three equal phases:
Early, Middle, and Late. In each phase, we
calculate the percentage of turns that fall into:
(1) Guiding Cognitive; (2) Questioning Cog-
nitive; and (3) Affective. Tracking these per-
centages across phases reveals shifts in learner
behavior, such as less help-seeking, more in-
dependent responses, and stronger positive
social signals

4.3 Results
4.3.1 Simulation Study Results
Win/Draw/Loss Rate: Against the next-speaker
prediction baseline, PRISM achieved a 62.3% win
rate, with 4.9% draws and 32.8% losses. This
result indicates that the system’s proactive turn-
taking mechanism generates more contextually ap-
propriate and pedagogically aligned responses than
a purely reactive approach.

Turn Quality Scores: The system demonstrated

strong performance in core pedagogical functions,
though long-term memory (Role Division Recall)
remains an area for improvement. Average scores
(1-10 scale) are shown in Table 2.

Table 2: Average Turn Quality Scores per Task

Task Score
Error Propagation 7.78
Classroom Management 7.13
Emotional Companionship 6.94
Context Memory Recall 6.67
Self-Correction 6.53
Self-Affirmation 6.37
In-depth Discussion 5.13
Role Division Recall 4.25

4.3.2 Human-Agent Study Results
Role Adherence Was High: The analysis of
IPA distributions confirms that all AI agents suc-
cessfully enacted their intended personas, while
the human learner (Tom) adopted a typical stu-
dent role (see Figure 3). Bob (Process Leader)
was dominated by “Gives orientation” (36.2%)
and “Gives suggestion” (14.7%). Alice (Content
Expert) showed an overwhelming concentration
in “Gives orientation” (52.4%). Charlie (Social-
Emotional Specialist) excelled in social categories
like “Shows solidarity” (19.3%) and “Tension re-
lease” (16.1%).

Figure 3: Overall Behavior Distribution for each partici-
pant. The distinct profiles confirm high role adherence
for AI agents and a typical learning pattern for the hu-
man participant.
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Group Dynamics Followed Effective Patterns:
As shown in Figure 4, the group’s interaction over
time mirrored Bales’ Equilibrium Hypothesis. The
session began with a high concentration of task-
oriented behavior (70-90%), which gradually gave
way to an increase in socio-emotional exchanges,
indicating effective group self-regulation.

Figure 4: Dynamic balance between Task-Oriented and
Socio-Emotional behavior for the entire group, follow-
ing Bales’ Equilibrium Hypothesis.

The System Effectively Scaffolded the
Learner: The human participant (“Tom”) exhib-
ited a clear and positive behavioral shift across
the session’s phases, which stands in contrast to
the more stable patterns of the AI agents (see
Figure 5). In the Early Phase, Tom’s behavior
was characterized by uncertainty, with “Question
Asking” accounting for 45% of his actions.
By the Late Phase, his need for guidance had
significantly decreased, with “Question Asking”
dropping to under 20%. Concurrently, his “Positive
Socio-Emotional” behaviors rose dramatically.

Data from the three interaction phases (Early,
Middle, Late) shows a consistent pattern:

• Guiding Cognitive Scaffolds: The frequency
of direct instructional support showed a down-
ward trend for most learners, most sharply
for Alice (from 83% to 60%). This reflects
the “fading” process as learners become more
autonomous.

• Questioning Cognitive Scaffolds: Help-
seeking behaviors decreased or remained low.
Most notably, the human learner, Tom, signifi-
cantly reduced his requests for support from a

high of 45% down to 20%, indicating a strong
increase in independence.

• Affective Scaffolds: In contrast, affective
scaffolds showed a strong upward trend across
all learners. This suggests that the collab-
orative relationship and the learner’s confi-
dence were progressively reinforced, with
Tom showing a substantial increase from 18%
to 45%.

Figure 5: Behavior Progression Across Phases for all
participants. The chart highlights the significant shift
in the human learner’s (Tom) behavior, demonstrating a
clear scaffolding effect.

These observable shifts in learner behavior (e.g.,
reduction of help-seeking, increase of independent
reasoning, and growth of positive socio-emotional
acts) serve as measurable learning outcomes in our
evaluation framework, demonstrating that PRISM
not only supports interaction but also fosters learn-
ing progress.

4.4 Agent Behaviors - Case Study
Based on the design of the described system, we
present some observations about the behavior and
capabilities of agents based on their roles (see Fig-
ure 6).

The role of agents in conversation. While the
agents primarily engage in natural, friendly ex-
changes, they also demonstrate distinct functional
roles: Bob serves as the group leader, coordinat-
ing problem-solving efforts and maintaining fo-
cus within the group (classroom management, like
stage initiation or stage transition); Alice takes on
the role of a knowledge verifier, critically evaluat-
ing the accuracy of information (check mistakes);
and Charlie provides emotional and motivational
support to the student (emotional support).

However, agents also contribute their own use-
ful knowledge and ideas to the group rather than
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Tom : Hi everyone, I’ve got this problem: "Find the number of vertical asymptotes of $y =
\frac{\sqrt{x+9}-3}{x^2+x}$".

Bob : Alright team, our first task is to recall the definition of a vertical asymptote... [Leader initiating
Stage 1]

Charlie : Guys! Let me define it first and give an example. A vertical asymptote is a vertical line…

Charlie : For example, in $y = \frac{1}{x-2}$, $x=2$ is the “uh-oh point” because the denominator is
zero... [Holding the floor]

Bob : ..., if definitions are clear, let’s move into planning. [Stage transition]

…

Bob : …what should be our first step in the plan?

Alice : I’d say find the domain first, that’ll tell us the candidate points for vertical asymptotes.

Tom : The denominator not zero, right, Charlie?

Charlie : Yep, and also make sure the square root’s inside is not negative. $x+9 \ge 0$ and $x^2+x\ne
0$. [Directed turn-taking]

Tom : So x >= -9 and x ≠ 0.

Alice : Tom, that’s not complete! You also missed $x \ne -1$. [Interruption, check mistake]

...

Tom : Hmm…, I’m bored now :<

Charlie : Haha, I get it, math sometimes feels like watching paint dry. But hey, just one tiny step left,
and then you’re free! [Emotional support]

Charlie_thought : I should continue
to give an example…][speak]

Alice_thought: I should wait Charlie
...][listen][4.1]

Evaluator: Charlie proactively wanted
to continue speaking, the other two
agents  remained silent...."high
coherence"...        Charlie[4.8]   
        

Baseline (SimClass) - Bob : Uh I agree
with Charlie...

Alice_thought : I think Tom's result
is missing the…][speak]

Charlie_thought: Ok, now that Tom
has solved it, I'll continue...][speak]

Evaluator: Charlie didn't notice Tom's
mistake, but Alice did... Alice is
expressing "urgent" thoughts to...     
           Alice[4.3], Charlie[2.1]

Baseline (SimClass) - Charlie : Ok,
great Tom, we should...

Figure 6: Case study of agent behaviors.

merely asking questions. In addition, they iden-
tify multiple targets for interaction, such as human
students, other agents, or the entire group, thereby
creating a more natural conversation compared to
focusing solely on human students.

Proactivity of agents. Compared to the baseline,
agents can proactively decide to participate in the
conversation by reasoning and evaluating situations
based on specific criteria:

• Directed turn-taking: When the previous turn
addresses a specific individual, that agent re-
ceives a higher priority for participation.

• Holding the floor: This refers to a case in
which the same participant contributed across
multiple consecutive turns. When an agent
explicitly signaled its intention to continue
speaking, other agents yielded the floor, al-
lowing the intended speaker to proceed. For
example, in the baseline, “Charlie” might not
have been selected as the next speaker, poten-
tially leading to a disjointed conversation.

• Interruption: If the student made a mistake,
the agent (e.g., Alice), intending to correct
it proactively chose to “speak,” and such an
intention was highly prioritized.

5 Conclusion and Discussion

This paper introduced PRISM, a multi-agent sys-
tem leveraging LLMs to simulate peer-like collab-

oration in math problem-solving. By assigning
distinct pedagogical roles to each agent and coordi-
nating conversation through a stage-based frame-
work, PRISM aims to improve group coordination,
engagement, and measurable learning outcomes.
In particular, outcomes were operationalized as ob-
servable shifts in learner behavior, such as reduced
help-seeking, increased independence, and stronger
socio-emotional signals during interaction.

The system faces several limitations. Token
cost and latency remain high due to repeated LLM
queries. The evaluation dataset is relatively small,
limiting generalizability. Furthermore, the system
depends heavily on prompt quality, making it sensi-
tive to minor changes in wording. The lack of long-
term memory also hinders continuity across ses-
sions, restricting deeper learner modeling. Finally,
while our analysis with IPA coding demonstrates
clear behavioral changes, we have not yet collected
subjective feedback (e.g., satisfaction or perceived
usefulness) from student participants, which would
provide valuable complementary evidence.

Future improvements may include support for di-
verse educational settings, integration of techniques
like question generation and knowledge tracing,
collection of direct learner feedback through sur-
veys or interviews, and the addition of long-term
memory for sustained learner modeling.
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