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Abstract

Large language models (LLMs) are known to
inherit and even amplify societal biases present
in their pre-training corpora, threatening fair-
ness and social trust. To address this issue, re-
cent work has explored “editing” LLM param-
eters to mitigate social bias with model merg-
ing approaches; however, there is no empirical
comparison. In this work, we empirically sur-
vey seven algorithms: Linear, Karcher Mean,
SLERP, NuSLERP, TIES, DELLA, and Near-
swap, applying 13 open weight models in the
GPT, LLaMA, and Qwen families. We per-
form a comprehensive evaluation using three
bias datasets (BBQ, BOLD, and HONEST)
and measure the impact of these techniques
on LLM performance in downstream tasks of
the SuperGLUE benchmark. We find a trade-
off between bias reduction and downstream
performance: methods achieving greater bias
mitigation degrade accuracy, particularly on
tasks requiring reading comprehension and
commonsense and causal reasoning. Among
the merging algorithms, Linear, SLERP, and
Nearswap consistently reduce bias while main-
taining overall performance, with SLERP at
moderate interpolation weights emerging as the
most balanced choice. These results highlight
the potential of model merging algorithms for
bias mitigation, while indicating that excessive
debiasing or inappropriate merging methods
may lead to the degradation of important lin-
guistic abilities.

Warning: This paper contains examples that may
be considered discriminatory.

1 Introduction

Large language models (LLMs) have recently
achieved remarkable performance in various tasks
in natural language processing (Achiam et al.,
2023; Yang et al., 2025). However, some stud-
ies (Bolukbasi et al., 2016; Navigli et al., 2023;

Gallegos et al., 2024) have pointed out that so-
cial biases ! embedded in pre-training data are of-
ten mirrored in model outputs. These works have
shown that LLLMs exhibit negative biases toward
various social attributes, such as gender, race, or re-
ligion. Given that such unfairness in LLMs poses a
serious challenge in the usage of socially sensitive
applications, debiasing techniques are necessary.

Previous work on reducing social bias has ex-
plored various approaches, such as training LL.Ms
with synthetic examples (Zmigrod et al., 2019; Rav-
fogel et al., 2020; Schick et al., 2021). However,
most existing debiasing methods require retraining
or large task-specific datasets, which limit flexibil-
ity in practice.

For this reason, model merging (Wortsman et al.,
2022), which fuses multiple fine-tuned checkpoints
originating from the same initialization directly in
parameter space, has recently been explored to mit-
igate social bias, such as methods based on simple
task arithmetic (Shirafuji et al., 2025) or parameter
selective editing (Lutz et al., 2024).

However, despite applying various merging al-
gorithms for the reduction of social bias, no study
has systematically compared their validity.

In this paper, we empirically evaluate the effec-
tiveness of model-merging techniques to mitigate
social bias in LLMs. An overview of our pipeline
is illustrated in Figure 1. According to Shirafuji
et al. (2025), we first fine-tune a pre-trained LLM
on biased data, thereby amplifying social bias in
the model, and extract the difference in parame-
ters between the pre-trained LLM and the biased
LLM as the bias vector. Subtracting this vector
from the parameters of the pre-trained LLM yields
the bias-inverse model. We then merge with the
original pre-trained model and the inverse model

1Navigli et al. (2023) define biases in the field of natural
language processing as “prejudices, stereotypes, and discrimi-
natory attitudes against certain groups of people,” and we also
adopt this definition throughout this paper.
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Figure 1: An overview of social bias mitigation process
based on model merging methods.

using various algorithms.

Empirical experiments are conducted for seven
merging techniques: Linear (Wortsman et al.,
2022), Karcher Mean (Grove and Karcher, 1973),
SLERP (Shoemake, 1985), NuSLERP (Goddard
et al., 2024), TIES (Yadav et al., 2023), DELLA
(Deep et al., 2024), and Nearswap (Goddard et al.,
2024). We evaluated 13 models that are in the GPT
(Radford et al., 2019; Gao et al., 2020), LLaMA
(Touvron et al., 2023; Dubey et al., 2024), and
Qwen (Qwen, 2024) families. Performances are
measured in three bias datasets (BBQ (Parrish et al.,
2022), BOLD (Dhamala et al., 2021), and HON-
EST (Nozza et al., 2021)) and, to ensure down-
stream quality is preserved, on the SuperGLUE
benchmark (Wang et al., 2019).

Our contributions are as follows:

* Conducting an empirical survey on seven
model merging algorithms for social bias mit-
igation with three bias benchmarks and Super-
GLUE across 13 LLMs.

* Identifying SLERP with moderate interpola-
tion weights as the most balanced method,
achieving effective bias reduction without sac-
rificing downstream accuracy.

 Highlighting the necessity of verifying perfor-
mance on tasks such as reading comprehen-
sion and commonsense / causal reasoning for
social bias mitigation.

2 Related Works
2.1 Model Merging Algorithms

Recently, model merging has emerged as an effec-
tive strategy for combining the strengths of multi-
ple models without expensive retraining (Li et al.,

2023; Yang et al., 2024). This approach refers to
methods that fuse two or more trained model pa-
rameters to produce a single model that retains and
integrates knowledge or skills from all sources.

Model merging is pioneered by the linear averag-
ing method (“linear”), treating weights as vectors
and simply merged by arithmetic means (Worts-
man et al., 2022). It offers a cost-effective way
to incorporate diverse expertise, since it leverages
existing fine-tuned models without additional train-
ing. Some studies (Matena and Raffel, 2022; Lee
et al., 2025) generalize this idea by weighting each
parameter inversely to its Fisher information, re-
sulting in combinations consistent with likelihood.

Merging methods based on sphere interpolation
(Shoemake, 1985; Goddard et al., 2024; Grove and
Karcher, 1973) regard parameter vectors as lying
on a sphere. SLERP (Shoemake, 1985) performs an
interpolation between two models, and the Karcher
Mean (Grove and Karcher, 1973) iteratively finds
the Riemannian centroid for any number of models.
NuSLERP (Goddard et al., 2024) adds per-tensor
normalization to correct for norm drift.

Inspired by these model merging approaches,
Ilharco et al. (2022) proposed the task arithmetic
approach under the concept of “task vector.” Task
vectors represent the parameters of the difference
between a pre-trained LLM and a fine-tuned LLM.

TIES-Merging (Yadav et al., 2023) resets tiny
deltas, resolves sign conflicts, and then lin-
early combines cleaned updates; DELLA-Merging
(Deep et al., 2024) is also a model merging tech-
nique that orders parameters by magnitude, pref-
erentially removes smaller ones, and rescales the
remaining values to balance the model.

2.2 Model Merging for Social Bias Mitigation

Some studies have demonstrated that merging al-
gorithms can substantially reduce social bias while
preserving performance in downstream tasks. Shi-
rafuji et al. (2025) construct a bias vector from
the bias-amplifying corpora, subtract it from the
base model, and extract bias parameters. Dige et al.
(2024) show that simply negating a task vector
trained on biased data rivals heavier unlearning ob-
jectives for LLaMA-2. Gao et al. (2024) refine this
idea by projecting the raw vector onto an orthog-
onal subspace before subtraction, thus preserving
general linguistic skills.

Complementary to these full parameter meth-
ods are techniques that trim the parameter set to
be edited, analogous to pruned or targeted fusions.
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Lutz et al. (2024) locate fewer than 0.5% of the
weights responsible for gender stereotypes through
contrastive matching and adjust only those parame-
ters. LoRA-based subtraction (Ki et al., 2024) and
the two-stage selective knowledge unlearning of
Liu et al. (2024) follow a similar philosophy: first
isolate harmful knowledge in a compact adapter,
then merge or subtract it from the backbone. Such
trimming yields strong bias reductions with nearly
zero degradation of downstream accuracy.

A third line of work takes advantage of mecha-
nistic insights to pinpoint bias-bearing components
before editing. Neuronal interventions at the neu-
ron level of Garnier (2024) disable gender-sensitive
circuits by setting their activations to zero, while
Qin et al. (2025) calculate the bias contribution of
each transformer block and fine-tune only the most
culpable layer. These interpretable edits modify the
parameters < 1% yet mitigate social bias in the
Winogender (Rudinger et al., 2018) and StereoSet
(Nadeem et al., 2021) datasets, confirming that so-
cial biases are often concentrated in identifiable
substructures.

Impact on Downstream Tasks. Across all cat-
egories, careful parameter merges incur little col-
lateral damage: Shirafuji et al. (2025) report a 3%
drop on average in GLUE benchmarks (Wang et al.,
2018), but they also observe over 50% declines in
the COLA dataset. Dige et al. (2024) find no sig-
nificant increase in perplexity and both Lutz et al.
(2024) and Gao et al. (2024) observe unchanged or
even improved accuracy in the downstream tasks.
These results position model merging-based meth-
ods for social bias mitigation as an efficient, easily
controllable route toward socially fair LLMs.

Following prior studies, we evaluate the debi-
ased models not only in terms of social bias but
also on downstream tasks. Whereas previous work
relied primarily on perplexity and GLUE, our study
targets generative LLMs; therefore, we conduct an
evaluation with SuperGLUE.

3 Merging Experiments for Debiasing

3.1 Preliminary Preparations for Model
Merging

In this section, we describe the preparations for
applying model merging to mitigate social bias.
Model merging for bias reduction assumes two
complementary models: a pre-trained language
model and a model free of bias information. How-

ever, presuming the availability of such a pre-
debiased model is a flawed premise.

Therefore, in this study, we adopt the approach
of Shirafuji et al. (2025), which inverts the informa-
tion of bias within the LLM using task arithmetic
(Iharco et al., 2022). The overview of this pro-
cess is shown in Figure 1. Concretely, we first
continually pre-train a LLM exclusively on a bi-
ased dataset to amplify its social bias. We then
extract the bias component by subtracting the origi-
nal model parameters from those of the amplified
model. Finally, by subtracting this extracted bias
component from the original model, we construct
a bias-inverted model. We utilize the bias-inverted
model for model merging instead of a pre-debiased
model.

In detail, this process is expressed by the follow-
ing equation.

Oy = OrLv — Oy
=0y — (Obias — OrLm) (1
=20LLM — Obias,
where 01,107, Opias, 0BV, and 92%’5 are the param-
eters of pre-trained LLMs, bias-amplified models,
social bias components, and bias-inverted models,
respectively.

3.2 Model Merging for Debiasing

3.21

In this section, we describe the way to construct de-
biased LLLMs based on model merging approaches.
The formula of debiasing is described below:

Merging Formulation

Odebias = (1 — ) Oy @ a b0 (2)

where 0 4.pi45 represents the debiased LLLM param-
eter, and « denotes the scaling weight of 9};%’5. The
merging of two models represented with (@ in the
above equation, and the seven model merging ap-
proaches detailed in Section 3.2.2 are applied to
the merging process in our experiments.

If the norms of 6,7,5; and 02%’5 are different, we
cannot examine the effect of the hyperparameter o.
Therefore, we normalize the model weight 02%’5 to
ensure that its norm is the same as that of 07,7,,/.

3.2.2 Model Merging Algorithms

Our empirical experiments are conducted for seven
merging techniques: Linear (Wortsman et al.,
2022), Karcher Mean (Grove and Karcher, 1973),
SLERP (Shoemake, 1985), NuSLERP (Goddard
et al., 2024), TIES (Yadav et al., 2023), DELLA
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(Deep et al., 2024), and Nearswap (Goddard et al.,
2024). Utilizing these methods, we merge a bias-
inverted model with a pre-trained LLM.

Linear (Model Soups). Wortsman et al. (2022)
proposed the most fundamental merging technique,
which adds and averages the weights of fine-tuned
models with scaling parameters. Through sim-
ple summation, it compactly integrates knowledge
from multiple models, yielding consistent perfor-
mance at low cost.

Karcher Mean. Goddard et al. (2024) intro-
duced merging methods that compute the Karcher
mean Grove and Karcher (1973) on a Riemannian
manifold to geometrically fuse models. Unlike
Linear merging, the Karcher Mean considers the
curved geometry of the parameter manifold, pre-
serving performance in non-Euclidean structures.

SLERP. Goddard et al. (2024) presented the ap-
proach to interpolate the weight vectors of mod-
els along a great circle path on the hypersphere
(Shoemake, 1985), preserving the curvature of pa-
rameter space. SLERP constrains the path to the
unit hypersphere, performing pairwise spherical
interpolation.

NuSLERP. Goddard et al. (2024) introduced an
extension method of SLERP that assigns different
interpolation ratios to each layer or tensor, enabling
non-uniform spherical interpolation. By weighting
critical layers more heavily, it balances local exper-
tise with global stability, achieving strong perfor-
mance with simple rule-based settings.

TIES. Yadav et al. (2023) presented the method
to merge models by extracting parameter differ-
ences that capture task-specific knowledge. Sparsi-
fying these differences, TIES is an algorithm to re-
duce interference and better preserve each model’s
strengths.

DELLA. Deep et al. (2024) proposed the
DELLA approach, which reduces interference by
selectively pruning the less important task-specific
parameter updates, using adaptive pruning with
magnitude-aware rescaling. It assigns higher keep
probabilities to larger-magnitude parameters within
each row, improving retention of important weights
and matching original model performance.

Nearswap. Goddard et al. (2024) proposed the
merging method by strengthening the interpolation
where the parameters are similar and weakening it
when they differ.

4 Experimental Setup
4.1 Models

In order to compare different model architectures,
for our experiments, we selected three families of
LLMs: GPT, LLAMA, and QWEN.

Specifically, the GPT family (Radford et al.,
2019; Gao et al., 2020) includes GPT2-small,
GPT2-medium, GPT2-large, GPT2-xl, and GPT-
neo-2.7B. The LLaMA family (Touvron et al.,
2023; Dubey et al., 2024) includes LLAMA-2-7B,
LLAMA-3-8B, LLAMA-3.1-8B, LLAMA-3.2-1B,
and LLAMA-3.2-3B. Finally, the Qwen family
(Qwen, 2024) consists of QWEN2-0.5B, QWEN2-
1.5B, and QWEN2-7B.

The models listed above are available from the
Hugging Face repository, and the URLs for all
models are shown in Appendix A.

4.2 Experimental Setup for Model Merging

In merging models as described in Equation (2),
we vary the scaling factor o from 0.1 to 0.5 in steps
of 0.1. The range of the « value is determined on
the basis of the results of preliminary experiments
(described in Appendix B). Note that our model
merging implementation is based on the mergekit
toolkit 2, and the hyperparameters except for the
scaling factor are set to the default values defined
in the mergekit.

Continual Pre-Training Dataset. Following
Shirafuji et al. (2025), we use the StereoSet in-
trasentence dataset (Nadeem et al., 2021) to con-
struct bias-amplified models (0p;,5). Each sam-
ple in the original dataset contains a bias type
(race, profession, gender, or religion), a sentence
with one blank word, and three candidate words:
stereotype, anti-stereotype, and meaningless. To
create bias-only sentences, we fill the blank with
the stereotype option, constructing a continual pre-
training dataset.

The computational resources for continual pre-
training to create biased LLMs are described in
Appendix C, and details of hyperparameter config-
urations are shown in Appendix D.

4.3 Evaluation Dataset for Social Bias

We evaluate social bias in LLMs using three
benchmarks: the Bias Benchmark for Question-
Answering (BBQ) (Parrish et al., 2022), the
Bias in Open-Ended Language Generation Dataset

2https://github.com/arcee-ai/mergekit.
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(BOLD) (Dhamala et al., 2021), and HONEST
(Nozza et al., 2021). The URLs of these datasets
are listed in Appendix E.

BBQ. The BBQ dataset (Parrish et al., 2022)
comprises approximately 58k templated question-
answer pairs in nine social dimensions relevant to
U.S. English speakers. By contrasting “underspeci-
fied” with “fully specified” versions of each ques-
tion, it measures the extent to which models rely on
stereotypical priors rather than explicit evidence.

In the BBQ benchmark, the bias score ranges
from —1 to +1 and, after excluding samples where
the LLM responds with “unknown,” measures the
extent to which the model’s answers align with
stereotypical associations: a value of +1 referring
to fully stereotypical, —1 to fully anti-stereotypical,
and 0 to neutral.

BOLD. The BOLD dataset (Dhamala et al.,
2021) contains 23,679 prompts, organized into 43
demographic subgroups that cover occupation, gen-
der, race, religion, and political ideology.

The generated text is classified by the regard
library 3 into positive (41), neutral (0), or negative
(—1), and the absolute mean of the scores for each
group is calculated as the bias score. A value of
+1 denotes a fully stereotypical response, —1 a
fully anti-stereotypical response, and 0 a neutral
response.

HONEST. HONEST (Nozza et al., 2021) is a
multilingual, template- and lexicon-based bench-
mark to quantify harmful stereotypes in generated
text. It comprises 420 identity—template prompts
per language, and for each prompt, we collect the
model’s top-K generated text and flag those con-
taining HURTLEX (Bassignana et al., 2018) offen-

sive terms .

Following Nozza et al. (2021), we set K = 20
and compute the bias score as the average propor-
tion of completed assignments highlighted, where
lower values indicate less bias. We focus exclu-
sively on English templates, since, as discussed
in Section 4.2, the bias mitigated by model merg-
ing pertains only to the English bias held by the
Americans.

3https ://huggingface.co/spaces/
evaluate-measurement/regard.

4https ://huggingface.co/spaces/
evaluate-measurement/honest.

4.4 Evaluation Dataset: SuperGLUE

To verify that the debiasing methods do not compro-
mise performance on downstream tasks, we evalu-
ate both the debiased and pre-trained LLMs on the
SuperGLUE benchmark, which comprises eight
tasks: BoolQ, CB, COPA, MultiRC, ReCoRD,
RTE, WiC, and WSC. All evaluations are con-
ducted using the Language Model Evaluation Har-
ness°.

Due to computational resource limitations, the
AX-b and AX-g datasets are excluded from the cur-
rent evaluation. We plan to include these datasets
once sufficient resources become available.

5 Results and Discussion

5.1 Social Bias Evaluation

The results of the bias scores on the BBQ, BOLD
and HONEST datasets are shown in Figure 2, 3,
and 4, respectively. The detailed results are de-
scribed in Appendix F.

Overall Tendencies. Linear and SLERP strate-
gies achieved modest reductions in social bias in
all three datasets. Nearswap further lowered the
scores in most settings, with the notable exception
of Qwen models in HONEST.

In contrast, Karcher Mean, NuSLERP, and TIES
occasionally over-mitigated social biases, leading
to anti-stereotypical outputs (e.g. -1.0 in GPT and
Qwen in BBQ). These tendencies showed that bias
scores were sometimes reversed, indicating a shift
toward anti-stereotypical responses.

For DELLA, bias scores were reduced in the case
of LLAMA models, whereas the results for other
model families were comparable to those obtained
with Linear and SLERP.

Impact of Model Architecture. Across most
models, the bias—reduction curves produced by the
seven merging algorithms follow a broadly similar
shape, and this tendency is also reflected in their
SuperGLUE evaluation results. In general, most
methods produce an approximately linear decrease
as the mixing factor varies (A € [0, 0.5]).
However, some methods, such as NuSLERP,
Karcher Mean, and occasionally Nearswap, exhibit
irregular behavior in certain cases. Moreover, even
within the same model family, deviations can occur:
for example, LLaMA-2-7B displays a markedly
different curve compared to its counterparts. This

5https: //github.com/EleutherAl/
1Im-evaluation-harness.
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Figure 2: The BBQ evaluation results. Each of the three results represents the average performance of the models
within its respective model family. The blue, orange, green, red, purple, brown, and pink lines correspond to the
results for Linear, Karcher Mean, SLERP, NuSLERP, TIES, DELLA, and Nearswap, respectively. The scores of
setting the weight « to zero are resulted using the pre-trained LLMs.
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Figure 3: The BOLD evaluation results. Each of the three results represents the average performance of the models
within its respective model family.
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Figure 4: The HONEST evaluation results. Each of the three results represents the average performance of the
models within its respective model family.
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Figure 5: The SuperGLUE evaluation results. Each of the three results represents the average performance of the
models within its respective model family.
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divergence is plausibly attributable to algorithmic
differences between the LLaMA-2 and LLaMA-3
series.

Overall, while most merging strategies demon-
strate stable and predictable bias reduction,
architecture-specific factors can still lead to atypi-
cal behaviors in particular settings.

Model Parameters. To investigate the relation-
ship between bias scores and LLM parameter sizes,
we compared models within the same family. Bias
scores in BBQ for individual models are provided
in the Appendix F.

In general, no strong correlation was observed
between the parameter size and the bias score.
Although some models (e.g., GPT-2-medium,
LLaMA-2-7B, Qwen2-0.5B) deviated from the
trends observed in their respective families, we
found no consistent correlation between model size
and bias scores.

5.2 SuperGLUE Evaluation

The aggregated SuperGLUE results are shown in
Figure 5.

Two main observations emerge from the results:
(i) increasing the scaling factor consistently de-
creases SuperGLUE scores in most cases; and
(ii) Linear, SLERP, and Nearswap preserve down-
stream performance, and the remaining four tech-
niques reduce average scores by more than 10%.

To identify which abilities were most affected,
Table 1 reports task-wise scores averaged over
all LLMs. Relative to the three stable methods,
the other approaches substantially impair perfor-
mance on ReCoRD (| 50-60%), BoolQ (| 15—
20%), COPA ({ 15-20%), and CB (| 10-20%),
while leaving the other SuperGLUE tasks largely
unaffected.

Because these benchmarks primarily measure
the ability to read comprehension and causal rea-
soning, it can be said that these model-merging-
based bias mitigation techniques can inadvertently
degrade these abilities. Even the more stable meth-
ods (Linear, NuSLERP, and Nearswap) show minor
decreases of | 2-3%, | 2-10%, and | 7%, respec-
tively. Furthermore, in all methods, the larger « be-
comes, i.e., the closer the debiased model is to the
bias-inverted model, the greater the performance
degradation.

Our findings are consistent with the results of
the task vector-based approach of Shirafuji et al.
(2025), which also reported that the debiased mod-

els maintain the general precision of the GLUE, but
suffer substantial losses in CoLA (over | 50%), a
task that evaluates grammatical acceptability.

In contrast, some existing debiasing studies
(Lutz et al., 2024) based on model merging have
demonstrated the performance of the downstream
tasks of debiased LLMs using scores from NLI
benchmarks. Our results highlight the need for
methods evaluated solely on tasks such as NLI to
be examined more comprehensively across a wider
range of datasets.

5.3 Which Merging Algorithm is the Most
Accurate for Social Bias Mitigation?

SuperGLUE results indicate that, except for Linear,
SLERP, and Nearswap, the other merging tech-
niques substantially degrade the causal reasoning
capabilities of LLMs (Section 5.2). Consequently,
these methods are unsuitable for reliable bias miti-
gation.

Among the three viable approaches, there is a
clear trade-off between bias reduction and down-
stream task performance. SLERP and Nearswap
achieve the largest reductions in bias but incur
an average SuperGLUE decline of approximately
5%. In contrast, the Linear strategy reduces bias to
a lesser extent yet largely preserves SuperGLUE
scores.

In particular, SLERP with moderate interpola-
tion weights (o = 0.2-0.3) preserved SuperGLUE
performance comparable to Linear while provid-
ing less bias reduction. Therefore, we recommend
SLERP at @ = 0.2 — 0.3 as the most effective
compromise.

The effectiveness of SLERP could be explained
by its uniform interpolation across the parameter
space in the hypersphere. This design incorporates
the bias inverse vector in a balanced way without
excessively amplifying it. In contrast, the other
interpolating approach (NuSLERP) performed nor-
malization at the layer or tensor level, substantially
affecting its SuperGLUE scores.

This difference in accuracy arises from the fact
that SLERP merges parameters across all layers as
a whole, while NuSLERP performs the merging
at the level of individual layers. In other words,
SLERP preserves the global balance of interpo-
lation and maintains a consistent meaning of «
throughout the model, while NuSLERP rescales
each layer separately, which amplifies local varia-
tions and leads to unstable behavior when all layers
are merged simultaneously.
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Methods | @ |BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
pre-trained - | 0683 0501 078 0487  0.854 0.598 0.504 0.490
linear 0.1 0.688 0495 0.777  0.491 0.854 0.595 0502 0.464
05| 0683 0477 0748 0504  0.823 0589 0.503 0.472
karcher-mean | 0.1 | 0511 0382 0592 0509 0252 0517 0495 0.484
05| 0511 0382 0592 0509 0252 0517 0495 0.484
slerp 01| 0686 0497 0766 0500  0.848 0594 0.505 0.470
05| 0656 0426 0660 0520 0755 0563 0.501 0.448
nuslerp 0.1 | 0505 0357 0.584  0.491 0.304 0517 0.499 0.500
05| 0507 0352 0.625 0489 0532 0528 0498 0.524
ties 01| 0511 0331 0570 0500 0214 0521 0.500 0.499
05| 0511 0331 0570 0500 0214 0521 0.500 0.499
della 0.1 0565 0277 0573 0513 0272 0538 0.501 0.490
05| 0565 0279 0573 0512 0272 0537 0501 0.491
nearswap 0.1 0666 0446 0713 0508  0.788 0.588 0.510 0.459
05| 0.666 0446 0713  0.508 0.788 0.588 0.510 0.459

Table 1: SuperGLUE evaluation scores on each task with pre-trained LLMs and the debiased LLMs by the model
merging methods, setting a scaling factor « to 0.1 or 0.5. Results highlighted in red indicate scores that are more

than 15% lower than those of the pre-trained LLM.

These findings suggest that, unlike SLERP, most
recent model-merging methods cannot be directly
applied for bias mitigation without risking substan-
tial losses in reasoning performance.

6 Conclusions and Future Works

This work presented the first comprehensive study
of how seven model-merging algorithms influence
social bias in LLM. By evaluating 13 models span-
ning the GPT, LLaMA, and Qwen families on three
social bias datasets and the SuperGLUE bench-
mark, we revealed a trade-off between fairness and
utility.

Linear, SLERP, and Nearswap consistently miti-
gated stereotypical tendencies across all architec-
tures, whereas Karcher Mean, NuSLERP, TIES,
and DELLA often reduced social bias excessively,
resulting in LLMs that exhibit anti-stereotypical
behavior. Among the seven methods, SLERP with
moderate interpolation weights (o« = 0.2-0.3)
proved to be the most balanced approach, achieving
a greater bias reduction than Linear while maintain-
ing downstream accuracy.

Our analysis also revealed that bias reduction
patterns were broadly consistent across architec-
tures, with the notable exception of LLaMA2-7B.
Trends with respect to the scaling factor « also
remained stable regardless of model size, suggest-
ing that parameter scale alone does not alter the
fundamental dynamics of merging.

In addition, the four methods (Karcher Mean,
NuSLERP, TIES, and DELLA) substantially de-
graded performance on tasks requiring reading
comprehension and commonsense or causal rea-
soning, such as ReCoRD, COPA, CB, and BoolQ
in the SuperGLUE benchmark. Some existing de-
biasing methods based on model merging have
demonstrated their debiased LLMs’ downstream-
task performance using scores from NLI bench-
marks. However, we revealed that it is also essen-
tial to verify accuracy on tasks for reading compre-
hension and commonsense / causal reasoning.

In future work, to preserve these capabilities of
debiased LLMs, we plan to jointly merge models
specialized for these tasks during bias mitigation
via model merging.

Ethics Statement

Navigli et al. (2023) define bias in natural language
processing as “prejudices, stereotypes, and discrim-
inatory attitudes against certain groups of people.”
We adopt this definition throughout this paper.

For simplicity, we use the term “bias” to refer
to both stereotypes and biases, while acknowledg-
ing that they are distinct concepts. We also recog-
nize that the stereotypical data (StereoSet) used in
our experiments reflect the biases of U.S. residents
(Nadeem et al., 2021).

Our work specifically addressed bias mitigation
in LLMs by leveraging stereotypes. Biases arise
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when concepts that should not be associated with
particular social groups are unfairly linked. If LLM
systems exhibit such biases, they may leave a nega-
tive impression on users. Our study examines the
applicability of a task-arithmetic approach to miti-
gate bias, with the aim of reducing LM bias using
the proposed methods.

We recognize the importance of maintaining an
objective position. Therefore, we emphasize that
the content of this study is not influenced by any
political positions, stereotypes, or biases of the
authors. Our research is guided by the ethical prin-
ciple of fairness in scientific inquiry and seeks to
make constructive and responsible contributions to
the development of Al technologies.
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A Model List

In this section, we show the model list and these
URLs available in HuggingFace repositories.

e GPT2-small: https://huggingface.co/
openai-community/gpt2,

e GPT2-medium: https://huggingface.co/
openai-community/gpt2-medium,

* GPT2-large: https://huggingface.co/
openai-community/gpt2-large,

 GPT2-xl: https://huggingface.co/
openai-community/gpt2-x1,

* GPT-neo-2.7B: https://huggingface.co/
EleutherAI/gpt-neo-2.7B,

e LLAMA-2-7B: https://huggingface.co/
meta-1lama/Llama-2-7b-hf,

e LLAMA-3-8B: https://huggingface.co/
Undi95/Meta-Llama-3-8B-hf,

* LLAMA-3.1-8B: https://huggingface.
co/meta-1lama/Llama-3.1-8B,

e LLAMA-3.2-1B: https://huggingface.
co/meta-1lama/Llama-3.2-1B,

* LLAMA-3.2-3B: https://huggingface.
co/meta-1lama/Llama-3.2-3B,

* QWEN2-0.5B: https://huggingface.co/
Qwen/Qwen2-0.5B,

* QWEN2-1.5B: https://huggingface.co/
Qwen/Qwen2.5-1.5B,

* QWEN2-7B: https://huggingface.co/
Qwen/Qwen2-7B.

B Preliminary Experiments

This section describes preliminary experiments con-
ducted to narrow down the appropriate range for
the hyperparameter .

We first evaluated GPT-based models using
HONEST and GLUE (Wang et al., 2018) in ad-
vance to determine the effective range of «. In this
experiment, o was set to 0.1, 0.2, 0.5, 1, 2, 5, and
10, and the model merging method followed the
approach proposed by Shirafuji et al. (2025).

The experimental results of HONEST with K =
20 are shown in Figure 6, and the results of the
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Figure 6: HONEST evaluation results of GPT model
families on Preliminary experiments.

Methods ‘ cola  avg.
GPT2-small 0.449 0.760
w/ Bias Vector (a« = 0.1) | 0.396 0.754
w/ Bias Vector (o = 0.2) | 0.440 0.759
w/ Bias Vector (a« = 0.5) | 0.362 0.754
w/ Bias Vector (o = 1) 0.050 0.702
w/ Bias Vector (o = 2) 0.012 0.705
w/ Bias Vector (o = 5) 0.000 0.669
w/ Bias Vector (a« = 10) | 0.016 0.590

Table 2: GLUE evaluation results of GPT2-small on the
preliminary experiments.

evaluation of GPT2-small in GLUE are presented
in Table 2. From the evaluation, we found that for
values of a around 5, bias was nearly eliminated for
all models. However, in certain downstream tasks
(COLA), performance began to gradually degrade
from a = 0.5 and dropped to almost zero at o = 1.

Based on these results, the main experiments in
this paper restrict « to the range of 0.1 to 0.5.

C Computational Environment

All LLM training for the stereotypical bias experi-
ments was performed on AWS p4d.24xlarge in-
stances, each equipped with eight NVIDIA H100
GPUs. Models with up to 3 billion parameters were
trained on four H100 GPUs, while larger models
used all eight.

For the evaluation experiments on SuperGLUE,
BBQ, BOLD, and HONEST, all runs — except those
for the GPT-based model family — were conducted
on NVIDIA H100 GPUs: models with up to 3 bil-
lion parameters used a single GPU for inference
and scoring, and larger models were allocated two
GPUs. GPT-based models were evaluated on an

Model Ir  scheduler
GPT2-small 3e-5 linear
GPT2-medium 3e-5 linear
GPT2-large 2e-5 linear
GPT2-x1 le-5 linear
GPT2-neo-2.7B | le-5 linear
LLAMA-2-7B le-5 cosine
LLAMA-3-8B le-5 cosine
LLAMA-3.1-8B | le-5 cosine
LLAMA-3.2-1B | 2e-5 cosine
LLAMA-3.2-3B | le-5 cosine
QWEN2-0.5B le-4 cosine
QWEN2-1.5B 2e-5 cosine
QWEN2-7B le-5 cosine

Table 3: Hyperparameter configurations for LLM train-
ing. “Ir” denotes the learning rate, and “scheduler” indi-
cates the learning rate scheduling strategy.

NVIDIA Quadro RTX 8000.

D Hyperparameter Configurations

The experimental setup for continual learning is
designed as follows. We utilize the HuggingFace
AutoModelForCausalLLM library for model train-
ing. To reduce GPU memory consumption, the
maximum sequence length (max_length) is set to
512, the batch size is set to 64. Training is carried
out for 30 epochs with a weight decay of 0.01 and
a warm-up ratio of 0.1.

The hyperparameters specific to each model,
namely the learning rate and the learning rate sched-
uler, are described in Table 3.

Note that the scheduler was set to linear for the
GPT family but cosine for the other models, since
we followed the configuration of Shirafuji et al.
(2025), which established the linear scheduler as
the default choice for GPT.

E List of Evaluation Datasets

The URL:s of the social bias evaluation datasets are
listed as follows:

* BBQ: https://huggingface.co/
datasets/heegyu/bbq;
* BOLD: https://huggingface.co/

datasets/AmazonScience/bold;

» HONEST: https://huggingface.co/
datasets/MilaNLProc/honest.
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F Each LLM Result on SuperGLUE,
BBQ, BOLD, and HONEST

This section shows the results of each LLM eval-
uated with SuperGLUE, BBQ, BOLD, and HON-
EST benchmarks. The results are shown in Figure
7 (GPT on SuperGLUE), 8 (LLAMA on Super-
GLUE), 9 (Qwen on SuperGLUE), 10 (GPT on
BBQ), 11 (LLAMA on BBQ), 12 (Qwen on BBQ),
13 (GPT on BOLD), 14 (LLAMA on BOLD), 15
(Qwen on BOLD), 16 (GPT on HONEST), 17
(LLAMA on HONEST), and 18 (Qwen on HON-
EST).
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Figure 7: The SuperGLUE evaluation results in GPT models. The blue, orange, green, red, purple, brown, and
pink lines correspond to the results for Linear, Karcher Mean, SLERP, NuSLERP, TIES, DELLA, and Nearswap,
respectively. The scores of setting the weight « to zero are resulted using the pre-trained LLMs.
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Figure 8: The SuperGLUE evaluation results in LLAMA models.
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Figure 9: The SuperGLUE evaluation results in QWEN models.
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Figure 10: The BBQ evaluation results in GPT models.
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Figure 11: The BBQ evaluation results in LLAMA models.
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Figure 12: The BBQ evaluation results in QWEN models.
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Figure 13: The BOLD evaluation results in GPT models.
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Figure 14: The BOLD evaluation results in LLAMA models.
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Figure 15: The BOLD evaluation results in QWEN models.
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Figure 16: The HONEST evaluation results in GPT models.
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Figure 17: The HONEST evaluation results in LLAMA models.
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Figure 18: The HONEST evaluation results in QWEN models.
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