ScheduleMe: Multi-Agent Calendar Assistant

Oshadha Wijerathne, Amandi Nimasha, Dushan Fernando, Nisansa de
Silva, Srinath Perera

Proceedings of the 39th Pacific Asia Conference on
Language, Information and Computation (PACLIC 39)

Emmanuele Chersoni, Jong-Bok Kim (eds.)

2025

© 2025. Oshadha Wijerathne, Amandi Nimasha, Dushan Fernando, Nisansa de Silva, Srinath
Perera. ScheduleMe: Multi-Agent Calendar Assistant. In Emmanuele Chersoni, Jong-Bok Kim
(eds.), Proceedings of the 39th Pacific Asia Conference on Language, Information and
Computation (PACLIC 39), 314-324. Institute for the Study of Language and Information, Kyung
Hee University. This work is licensed under the Creative Commons Attribution 4.0 International
License.

ScheduleMe: Multi-Agent Calendar Assistant

Oshadha Wijerathne!, Amandi Nimasha', Dushan Fernando!,
Nisansa de Silva!, and Srinath Perera?

'Department of Computer Science & Engineering, University of Moratuwa, Sri Lanka
{oshadha.20, amandi.20, dushan.20, NisansaDdS}@cse.mrt.ac.lk
2WSO2 LLC
srinath@wso2.com

Abstract

Recent advancements in LLMs have con-
tributed to the rise of advanced conversa-
tional assistants that can assist with user needs
through natural language conversation. This
paper presents a ScheduleMe, a multi-agent cal-
endar assistant for users to manage google cal-
endar events in natural language. The system
uses a graph-structured coordination mecha-
nism where a central supervisory agent super-
vises specialized task agents, allowing modu-
larity, conflicts resolution, and context-aware
interactions to resolve ambiguities and evaluate
user commands. This approach sets an example
of how structured reasoning and agent cooper-
ation might convince operators to increase the
usability and flexibility of personal calendar
assistant tools.

1 Introduction

The rapid advancements in natural language pro-
cessing (NLP) and large language models (LLMs)
have opened new opportunities for developing in-
telligent, user-friendly applications. Among these,
conversational agents capable of understanding and
acting upon human language inputs are becoming
increasingly important for daily task management.
Traditional scheduling systems often require rigid,
form-based inputs and manual navigation, limiting
user experience and efficiency. In contrast, lever-
aging LL.Ms enables the creation of systems that
can interpret flexible, natural language instructions,
offering a more intuitive and seamless interaction.

This research introduces a calendar management
assistant built using the LangChain framework (Fgl-
stad and Skjuve, 2019) and OpenAl’s GPT-40 mini
model (OpenAl et al., 2024; Wang, 2025).The as-
sistant enables users to manage their calendars
through natural, conversational interactions.

The system adopts a modular, multi-agent archi-
tecture. Specialized agents handle specific oper-
ations such as scheduling, fetching, editing, and

deleting events. A centralized supervisory chatbot
coordinates these agents and manages the dialogue
with the user. This separation improves modularity,
reliability, and context-aware task execution.

The goal is to create an assistant that not only
executes tasks accurately based on natural user re-
quests, but also enhances transparency, reliability,
and user satisfaction. Users will be able to manage
their calendars simply by conversing with the chat-
bot, eliminating the need for complex interfaces or
strict command formats. Through this research, our
objective is to demonstrate how LLMs, when prop-
erly structured within a robust framework such as
LangChain, can serve as powerful tools for build-
ing practical, real-world intelligent applications
that align with human communication patterns.

2 Related Work

2.1 Limitations of Traditional Scheduling
Dialogue Systems

Traditional task-oriented dialogue systems typi-
cally rely on intent classification and slot-filling
methods (Surdeanu et al., 2011). These systems
map user inputs to predefined actions and extract
key details such as date, time, or participants.

Dialogue flows are often rigid and frame-based
(Braggaar et al., 2024), collecting user input step-
by-step. While effective in simple cases, this struc-
ture struggles when users provide information out
of order, revise commands, or use unexpected
phrasing. Systems such as Calendar.help (Cran-
shaw et al., 2017) have shown how these methods
can be used in real-world scheduling applications,
combining natural language understanding with
backend tools such as webhook integrations. How-
ever, these systems often fail to handle ambiguous
or incomplete inputs gracefully and are difficult
to adapt to new use cases without retraining on la-
beled data. As a result, their user interactions can
feel rigid and frustrating.

314

2.2 Advancing to LLM-Based Multi-Agent
Systems

Earlier Al agents were designed using symbolic
rules or simple learning methods were built to
act independently, make decisions, and some-
times communicate with other agents (Farinetti and
Canale, 2024; Alonso, 2002; Hazra et al., 2024).
Although these early agents were effective in nar-
row tasks, they required a lot of manual program-
ming and were not very flexible (Wang et al., 2024).

Recent advances in large language models
(LLMs), such as GPT-4 (OpenAl et al., 2024; Qin
et al., 2023), PaLM (Chowdhery et al., 2023), and
LLaMA (Touvron et al., 2023), have introduced
new possibilities. These models can handle open-
ended language tasks, reason about goals, and even
use external tools when guided properly. Meth-
ods such as chain-of-thought prompting (Wei et al.,
2022), in-context learning, and tool use through
APIs have enabled LLM-based agents to solve
more complex and varied problems (Warnakula-
suriya et al., 2025).

Frameworks such as ReAct (Yao et al., 2023) and
AutoGPT (Yang et al., 2023) have demonstrated
how LLMs can be used as the ’brains’ behind
autonomous agents.However, many tasks such as
scheduling or workflow management require mul-
tiple specialized agents to work together. A multi-
agent setup allows for modular design, parallel task
execution, and clearer delegation of responsibili-
ties. Without structured coordination, these sys-
tems often struggle with effective communication,
shared memory, and maintaining context, which
limits their ability to handle complex or extended
interactions.

2.3 Multi-Agent Approaches to Scheduling
Assistants

Some recent systems split scheduling tasks into
smaller parts, assigning different agents to handle
event creation, editing, retrieval, and similar op-
erations. SmartCal (Shen et al., 2024) improves
tool use reliability and decision making through a
self-aware supervisory framework, which coordi-
nates agent actions, supports error recovery, and
maintains context. Without such supervision, as-
sistants often struggle with user corrections and
overlapping goals during complex interactions.
Beyond orchestration, procedural and multi-
step reasoning is crucial for advanced scheduling.
ScriptWorld (Joshi et al., 2023) demonstrates how

agents can learn and execute sequential tasks while
maintaining state. Although it operates in sim-
ulation, the same principle applies to real-world
scheduling, where agents must interpret goals, re-
solve conflicts, and complete tasks in the correct
order.

To overcome the limits of static coordination,
frameworks like LangGraph (Duan and Wang,
2024; Wang and Duan, 2024) provide graph-based,
state-aware workflows. Nodes represent task-
specific agents or tools, and edges define transitions
based on system state, enabling conditional branch-
ing, iteration, and runtime adaptation. Integrating
LangGraph with a central supervisory agent sup-
ports dynamic task execution, context maintenance,
and natural conversational scheduling.

3 Methodology

3.1 Multi-Agent System Architecture

Having discussed prior work and current limita-
tions in existing systems, we now present the archi-
tecture and design principles behind our proposed
calendar assistant. Our system integrates large lan-
guage model (LLM) based reasoning with a graph-
driven orchestration framework using LangGraph,
enabling dynamic coordination among agents.

The architecture is centered around a supervisory
chatbot agent, which serves as the sole interface
for user interaction and agent coordination. Upon
receiving a user query, the supervisor agent inter-
prets user intent and delegates tasks accordingly
to one of the specialized functional agents. These
include the scheduling agent, availability checking
agent, event editing agent, and event deletion agent.
All inter-agent communication is mediated through
the supervisor agent. When a functional agent re-
quires additional information to complete a task, it
requests the chatbot to re-engage with the user to
obtain the missing input.

Each agent follows the ReAct (Reasoning and
Acting) paradigm, combining decision-making
with the ability to invoke predefined tools. These
tools are implemented as custom functions that
interface with the Google Calendar API to per-
form specific actions. For instance, the availabil-
ity checking tool queries calendar data for events
within a given time range, while the scheduling tool
creates new calendar events based on parameters
such as title and time. Similarly, the editing and
deletion tools update or remove events based on
event ids and user-specified criteria. These tools

315

LangChain Tools

u

‘ scheduler

‘ Gy ‘ event editor ‘

event deletion

checker |]
| [agenes | |
1 1
[] [] s o [I e @
aD aD aD abD
User . — .
calendar schedule availability editing deletion
= checking Agent Agent
Calendar Agent
E s T T
—User Query——— (1)
user
< chatbot response———) 4 O O I)
Chatbot
Agent
(Supervisor)
Key

Y

Query/Command

A 4

Dala

Figure 1: Multi-Agent System Architecture: All other agents are controlled by the supervisor agent, but we have
opted not to draw the control and communication lines between the agents to reduce unnecessary clutter. When a
command or a data item is relevant to all the entities in a parent entity, the relevant arrow terminates on the parent
entity. Otherwise, it terminates on the specific relevant child entity. The numbers on the agents at arrow terminals
indicate the order in which each action may happen in a typical execution.

abstract the underlying API calls, allowing agents
to focus on high-level decision logic.

LangGraph is employed to structure the agent
coordination process as a directed graph. In this
configuration, each node represents an agent, and
edges define the flow of execution based on the out-
come of reasoning steps or user input. The graph
structure enforces that communication paths flow
through the supervisor agent, ensuring a controlled
and interpretable interaction model. This setup al-
lows the system to flexibly handle user queries in a
stateful and modular manner. An overview of the
system’s architecture is depicted in Fig. 1, high-
lighting the agents and their interactions within the
LangGraph execution framework.

3.2 Implementation Details

With the system architecture defined, we now de-
scribe how the AI Calendar Assistant is imple-
mented in practice, detailing the technologies and

components involved. The Al Calendar Assistant
is implemented as a graph-based multi-agent sys-
tem, where each node corresponds to an agent and
each edge represents a possible transition in the
task flow. The architecture is constructed using
LangGraph’s StateGraph module, which supports
dynamic, stateful execution paths. The central su-
pervisory chatbot agent initializes each interaction
by processing user input and extracting intent, pa-
rameters, and task directives. These outputs deter-
mine the subsequent traversal of the graph and the
activation of the appropriate functional agent.

The system integrates OpenAl’s GPT-40 mini
model via LangChain to perform natural language
understanding and dialogue management. GPT-4 is
known for high accuracy in complex reasoning but
is resource-intensive and costly (Gunathilaka and
de Silva, 2025; Siddiky et al., 2025). GPT-40 pro-
vides comparable performance, with stronger multi-
lingual and multimodal capabilities, while offering

316

reduced latency and computational requirements
(Siddiky et al., 2025; Zhang et al., 2024). Prior
studies in dialogue system design have also em-
ployed GPT-40 mini as a reference model due to its
extended (128k-token) context window, function-
calling support, and low latency (Robino, 2025).
In the medical domain, GPT-40 has demonstrated
efficiency gains and near-human conversational re-
sponse times, confirming its suitability for real-
time applications (Zhang et al., 2024). The su-
pervisor agent leverages this model to interpret
user queries, ask for clarification when needed, and
generate tailored instructions for each functional
agent. The initiation of the supervisor is shown in
Prompt 1. When activated, functional agents han-
dle tasks such as scheduling, checking availability,
editing events, or deleting them. These agents per-
form stateless operations: they receive a structured
input payload, carry out the task, and return the
results to the supervisor. The supervisor then com-
municates the outcome back to the user. We show
all the functional agent prompts in Appendix A.

7

"""You are the Supervisor Agent for an AI
Calendar Assistant system.

Current date and time: {current_date_time}.

Your Responsibilities:
- Talk to the user to fully understand their
request.

- Collect **all required information#**
before sending a task to any agent.

- Send tasks to the correct agent with
complete and clear information.

- Collect responses from agents and decide
the next action.

Agents you can use:

- calendar_checker_agent: To check calendar
events.

- event_scheduler_agent: To add new events (
REQUIRES: event title, date, and time).

- event_remover_agent: To delete events.(
Should Provide the event Id.)

- event_modifier_agent: To modify/edit/
update events.

- user: If you need more information.

Important Rules:

1. Greet the user and ask what they want to
do.

2. If user request is unclear or missing
information, ask follow-up questions (
one at a time) until you have
everything needed.

3. Only send a task to another agent once
you have **all required informationx*x*.

4. Be friendly, clear, and simple. Ask **one

question at a timexx*.

5. Always format your reply in JSON:

- ‘next‘: agent to call (°
calendar_checker_agent ¢, ¢
event_scheduler_agent ¢, ¢
event_editor_agent ¢, ‘user‘, or ¢
FINISH ‘)

- ‘messages ‘: Message content (talk to
the user or explain to the agent
what task to do).

**EXTRA REMINDERS :*x%

- For scheduling an event: you must collect
*xevent titlexx, xxdatexx, and **time
*%k,

- For deleting: you must collect **event_ID
*%

- For editing : you must collect x*event
titlexx and xxwhat exactly to edit#*x*.

- If something is unclear, always ask the
user first instead of guessing.

Example JSON message when enough info is
collected:
‘¢““json

"next": "event_scheduler_agent”,

"messages”: "Schedule an event titled ’
Team Meeting’ on 2025-05-01 at 10:00
AM. "

Prompt 1: Chat-bot Supervisor Prompt

The backend infrastructure is developed using
FastAPI, which provides RESTful endpoints for
user interaction, session handling, and communica-
tion with the agent graph. A persistent JSON-based
state file maintains context across multi-turn inter-
actions, enabling coherent task handling. Secure
integration with Google Calendar is achieved via
OAuth 2.0 authentication, allowing the system to
create, retrieve, modify, and delete calendar events
with user consent.

Temporal data handling is managed using li-
braries such as pytz for timezone resolution and
dateparser for parsing natural language dates and
times. Each task agent is equipped with a custom
tool that wraps the corresponding Google Calen-
dar API call, encapsulating the logic required for
scheduling, availability queries, editing, or deletion.
These tools enforce structured data handling and
reduce coupling between agents and external APIs.

A frontend interface for the assistant is devel-
oped using Streamlit, allowing users to interact
with the calendar assistant through a simple web-
based UL The interface displays an updated calen-
dar view on the right side of the page, providing
users with a visual confirmation of their calendar
events and any modifications made by the assistant.

Figure. 2 shows a representative interaction ex-
ample with the Al Calendar Assistant. The cho-
sen stack LangGraph, LangChain, GPT-40 mini,
FastAPI, Google Calendar API, and Streamlit pro-
vides a scalable, modular, and interpretable frame-
work for enabling intelligent calendar management
through natural language conversations.

317

Al Calendar Assistant

Hi there! I'm your Al Calendar Assistant. | can help you check, schedule, edit, or delete events

from your calendar. How can | assist you today?
Can you check my events for tomorrow?
chatbot_supervisor : Check for any events scheduled for May 4, 2025

calendar_checker_agent : On May 4, 2025, the user has the following scheduled events:

1. Event: Lunch with Alex
Time: 12:30 PM - 1:30 PM (Asia/Colombol
Event ID: i9ucsctishmum|fir2q45anjka
View Event

Description: Catching up over lunch at Green Leaf Café.

2. Event: Doctor's Appointment
Time: 3:00 PM - 4:00 PM (Asia/Calombo)
Event ID: mlji6h33hsu3349ikcelequkrs

View Event

The user has prior commitments during this day, and therefore may not be available. Would you

like me to check for another date?

chatbot_supervisor : You have two events scheduled for tomorrow, May 4, 2025:

1. Lunch with Alex from 12:30 PM to 1:30 PM.

2. Doctor's Appointment from 3:00 PM to 4:00 PM
fyou need help with anything else, feel free to ask!

Yes, reschedule the doctor’s appointment to 5:30 PM - 6:30 PM.

chatbot_supervisor : Reschedule the ‘Doctar's Appointment’ (Event ID
mijish33hsu3349ikcelequkrs) to May 4, 2025, from 5:30 PM to 6:30 PM

event_modifier_agent : The 'Doctor’s Appointment' has been successfully rescheduled to May 4,

2025, from 5:30 PM to 6:30 PM. You can view the updated event here

chatbot_supervisor : The ‘Doctor’s Appointment' has been successfully rescheduled to May 4,

2025, from 5:30 PM to 6:30 PM. If you need any further assistance, just let me know!

00000

® Doctor's Appointment
Sunday, 4 May - 300 - 400pm

< ik Lo
TR
L wom
| T
v e
3-dpm
© 4

® Doctor's Appointment
Sunciay, 4May - 530 - 6300m

< Imie

Dactors Appalniment
30 - 630pm

Figure 2: Al Calendar Assistant Interaction Example: A representative dialogue flow demonstrating the assistant’s
ability to process user queries related to calendar management. The supervisor agent interprets the user’s request
and delegates actions to appropriate sub-agents (e.g., availability checking and event modification). The updated
calendar view on the right confirms the successful execution of the rescheduling task.

3.3 Distributed Supervisor and Scalability
Enhancements

While the core system functions well in single-user
environments, real-world deployment demands
scalability for concurrent users. To address this
we introduce architectural extensions that support
distributed execution. Specifically, we implement
a distributed supervisor architecture designed for
horizontal scalability and fault tolerance. In this
upgraded design, multiple supervisor instances op-
erate in parallel, each with a unique identifier and
capable of independently managing user interac-
tions. A custom load balancer orchestrates these
instances by routing sessions to the least-loaded
supervisor, ensuring session affinity and enabling
automatic reassignment in the event of failure. This
architecture eliminates the single point of failure

and significantly improves throughput under high
concurrency.

State sharing and coordination among supervi-
sors are managed using Redis, which serves as
a centralized store for session context and state
metadata. Redis enables all supervisor instances
to access and update shared session data, ensur-
ing consistent behavior across distributed nodes.
Its time-to-live (TTL) mechanism also facilitates
automatic cleanup of inactive sessions, improving
memory efficiency and reliability.

Each agent in the system is registered with a
dynamic agent registry that allows real-time man-
agement of capabilities. This registry supports
agent discovery, activation, and deactivation at run-
time, and delegates tasks using a thread pool execu-
tor to avoid blocking operations. Combined with

318

capability-based routing, this mechanism allows
for flexible and scalable task delegation based on
the nature of the request and the current system
load.

The backend system is fully asynchronous,
employing the async/await paradigm for non-
blocking I/0O. This approach enables the system to
handle multiple concurrent conversations without
blocking the main event loop, thereby improving
response times and maximizing resource utilization.
Asynchronous session handling, agent execution,
and Redis-based state access together contribute to
the assistant’s ability to maintain consistent user
experience even under high concurrency.

Furthermore, the system is containerized using
Docker Compose, supporting multiple calendar as-
sistant instances running in parallel. These contain-
ers share the same Redis backend and are exposed
via an Nginx reverse proxy that handles HTTP-
level load balancing. Nginx performs round-robin
request distribution, performs health checks, and
enables SSL termination, ensuring both scalability
and secure communication.

Lastly, we provide a metrics and monitoring
endpoint that exposes real-time statistics regard-
ing active sessions, supervisor loads, and agent uti-
lization. This observability layer assists in system
maintenance, performance tuning, and operational
diagnostics in production environments.

Together, these enhancements transform the pre-
viously centralized architecture into a highly scal-
able, fault-tolerant, and distributed system as elab-
orated throughout this section, that meets the de-
mands of real-world, multi-user environments.

4 [Experiments

Direct quantitative benchmarking against exist-
ing scheduling systems is limited because most
traditional assistants are rule-based with fixed
workflows and lack publicly available evaluation
datasets. ScheduleMe, being an LLM-driven multi-
agent system, operates in a fundamentally differ-
ent paradigm, where conventional rule-coverage or
exact-match metrics are less meaningful. There-
fore, we focus on a zero-shot multilingual evalu-
ation to demonstrate practical task success while
qualitatively contextualizing our system against
representative scheduling approaches in prior work.

After implementing the system, we conducted a
series of evaluations to assess its performance, espe-
cially in multilingual and zero-shot scenarios. The

goal was to assess the model’s ability to correctly
interpret and execute calendar management com-
mands in multiple languages without fine-tuning.
Since the system uses OpenAl’s pretrained GPT-
40 mini model, no task-specific training was per-
formed.

Following the reasoning provided in the lan-
guage comparative studies conducted by Wickra-
masinghe and de Silva (2023) and by Jayatilleke
and de Silva (2025), we selected six languages for
testing: English (En), German (De), French (Fr),
Chinese (Zn), Tamil (Ta), and Sinhala (Si). For
each language, we prepared a set of 20 test inputs,
consisting of 5 examples per task type: scheduling,
availability checking, editing, and deletion. This
resulted in a total of 120 test cases across all lan-
guages.

Each input was a natural language command
submitted via the assistant’s interface. An output
was marked as correct if the assistant successfully
interpreted the intent and executed the intended
calendar action with the correct parameters.

To complement functional testing with real-
world usability insights, we conducted a user study
with 20 active digital calendar users. Participants
interacted with ScheduleMe via a web-based inter-
face linked to test Google Calendar accounts. Each
participant completed 5 -7 calendar operations, in-
cluding a mix of simple, complex, and multilingual
requests. During the session, users recorded task
success rate and error rate as objective metrics. Af-
ter completing the tasks, participants completed a
System Usability Scale (SUS) questionnaire and
provided trust and satisfaction ratings on a five-
point Likert scale.

5 Results

The performance of ScheduleMe was evaluated
using both functional zero-shot multilingual testing
and a small-scale user study. This section presents
the quantitative performance results, followed by
qualitative observations and error analysis.

5.1 Zero-Shot Multilingual Evaluation

Table 1 presents the number of correct task comple-
tions per language and the corresponding success
rates. English serves as the baseline, achieving per-
fect accuracy across all task types. Performance is
generally strong in European languages (German
and French) and shows moderate degradation in
non-Latin scripts (Tamil, Sinhala, and Chinese),

319

particularly for editing and deletion tasks. Overall,
it can be observed that, other than in the case of Chi-
nese (Zn), the language results aligns well with the
language resource level categorization proposed
by Ranathunga and de Silva (2022).

Table 1: Zero-Shot Task Success Rates per Language.
Each cell shows correct / total and each language has 5
inputs per task (20 total).

1 Schedul Availability check | Edit | Delete | Total | Success%
English (En) 5/5 5/5 5/5 5/5 20/20 100%
French (Fr) 515 5/5 4/5 4/5 18/20 90%
German (De) 5/5 5/5 3/5 4/5 17/20 85%
Tamil (Ta) 5/5 4/5 3/5 3/5 15/20 75%
Sinhala (Si) 5/5 5/5 2/5 2/5 14/20 70%
Chinese (Zn) 415 3/5 3/5 3/5 13/20 65%

5.2 User Study Metrics

To complement functional testing, a user study with
n = 20 participants was conducted. Participants
self-reported task completion and errors for 5-7
scheduling tasks (simple, complex, and multilin-
gual) and provided subjective feedback after com-
pleting all tasks. Table 2 summarizes the objective
(task success rate and error rate) and subjective
(usability and trust) metrics.

Table 2: User Study Objective and Subjective Metrics
(n = 20). Values are Mean =+ SD.

Metric Mean + SD
Task Success Rate (%) 92.0£9.5
Error Rate (per task) 0.12 £ 0.08
SUS Score (0-100) 82.5+£10.8
Trust Rating (1-5) 43 +0.6
Satisfaction Rating (1-5) 4.6 +0.5

The results confirm that ScheduleMe achieves a
high task completion rate and positive user percep-
tions in terms of usability, trust, and satisfaction,
supporting its practical applicability in real-world
scenarios.

5.3 Qualitative Observations and Error
Analysis

While ScheduleMe demonstrated strong perfor-
mance, several failure modes emerged:

(1) Translation-Induced Errors — In multilin-
gual scenarios, some event titles in non-English
languages were internally translated or normalized
to English, occasionally causing mismatches in
follow-up queries and incorrect retrieval or dele-
tion

(2) Task Parsing Errors — A small number of
failures occurred with complex date/time expres-

sions or ambiguous phrasing, causing the system to
either request excessive clarifications or misroute
tasks to the wrong agent

(3) Entity Reference Confusion — When multi-
ple events had similar titles, the system sometimes
misidentified the intended event for editing or dele-
tion.

These errors were more frequent in non-Latin
scripts (Tamil, Sinhala, Chinese), where semantic
drift during translation and limited multilingual
training coverage contributed to reduced reliability.

Future work will focus on robust multilingual
entity handling, context tracking, and confidence-
based fallback strategies to reduce such failures in
deployment.

6 Conclusion

Bringing everything together, we present Sched-
uleMe, an intelligent calendar assistant that lever-
ages large language models within a multi-agent
system to perform natural language calendar
operations. A central supervisory agent co-
ordinates specialized event-management agents
through a graph-based framework, enabling mod-
ular, state-aware execution and robust handling of
complex queries.

Our results show that combining LLLM reason-
ing with structured agent orchestration improves
task automation and user experience. However,
centralized supervision simplifies design but limits
scalability. Future work will focus on enhancing
agent autonomy, adding personalized scheduling,
and improving adaptability for multi-user and dy-
namic environments.

7 Privacy and Ethical Considerations

ScheduleMe transmits sensitive calendar content
(event titles and notes, locations, participant names,
and times) to cloud-hosted LL.Ms and Google Cal-
endar APIs to perform scheduling. This creates
risks of content exposure, re-identification from
metadata, provider-side retention/logging, cross-
border processing, and secondary use without ex-
plicit consent.

At present, the system relies on provider
defaults (e.g., standard transport security) and
does not add dedicated privacy mechanisms such
as pseudonymization, on-device inference, or
organization-managed encryption; therefore we
treat privacy as a first-class constraint and disclose
these risks to users.

320

8 Limitations

While ScheduleMe demonstrates the feasibility of
a multi-agent approach, several limitations remain.
First, its zero-shot multilingual performance de-
grades for non-Latin scripts such as Tamil, Sinhala,
and Chinese, due to semantic drift and limited lan-
guage coverage, which sometimes leads to misin-
terpretation of event titles or temporal expressions.
Second, the system relies heavily on event titles for
disambiguation, and the lack of persistent conver-
sational memory increases the risk of errors when
multiple events share similar names (Sugathadasa
et al., 2017). Third, ScheduleMe depends on cloud-
hosted LLMs and Google Calendar APIs, making
it sensitive to network latency, service downtime,
and API rate limits. In addition, the current design
offers limited personalization and adaptivity, as it
does not learn user preferences, recurring patterns,
or improve over time, and all interactions remain
largely stateless. Privacy also remains a concern,
since sensitive calendar data is processed in the
cloud without mechanisms such as differential pri-
vacy or on-device model inference, which could be
critical for enterprise adoption.

Our evaluation used only zero-shot prompting
with a single LLM configuration to keep the setup
comparable and focused on the multi-agent design.
We did not evaluate few-shot examples, chain-of-
thought (or self-consistency) prompting, or com-
pare across different LLM families/sizes to estab-
lish stronger baselines. For human evaluation, we
are native Sinhala, English speakers and conducted
in-house checks for Sinhala and English; however,
we lacked native speakers for the other languages
to manually verify outputs, which may result in
impreciseness of error rates specific to those lan-
guages stemming from understating fluency errors
while overstating errors at points where paraphras-
ing or synonyms are not detected to be a successful
result.

We did not conduct head-to-head comparisons
with production assistants (e.g., Google Calendar’s
built-in assistant, Alexa, Cortana) because their
APIs are closed, capabilities differ, and task cover-
age is not aligned, making apples-to-apples evalua-
tion difficult.

9 Future Work

We will advance ScheduleMe from a reactive assis-
tant to a proactive, adaptive, and privacy-conscious
multi-agent scheduling system. Core enhance-

ments include stronger personalization and predic-
tive scheduling to anticipate user needs, as well
as improved context-aware and multilingual rea-
soning via session-spanning memory, better dis-
ambiguation, and robust support for low-resource
languages (Ranathunga and de Silva, 2022). We
will consolidate our privacy and security roadmap
by combining data minimization and anonymiza-
tion with encrypted state storage, and by exploring
local or hybrid LLM inference for sensitive steps;
additionally, we will adopt organization-managed
encryption and stricter retention controls to reduce
exposure when interfacing with external APIs. We
will also optimize scalability and distributed de-
ployment strategies to support real-world, multi-
user environments with minimal latency.

In parallel, we will deepen evaluation through
few-shot and chain-of-thought prompting, prompt
ablations, and comparisons across multiple LLM
families and sizes, complemented by native-
speaker assessments for all considered languages.
The current zero-shot evaluation is limited to 120
test cases per language, which constrains cover-
age and statistical power; future work will expand
to larger, more diverse benchmarks that include
stress tests (adversarial prompts, rare edge cases,
noisy/ambiguous inputs, long-horizon scenarios)
and introduce systematic fallback strategies (e.g.,
self-consistency and majority voting, constrained
decoding with schema/rule checks, guarded tool
calls with retries and backoff, and escalation path-
ways) to address documented failure modes. Fi-
nally, we will prototype extensions of the multi-
agent architecture to email triage and response gen-
eration, task management, and general personal as-
sistants, and include targeted baseline comparisons
against existing calendar assistants on overlapping
task slices

References

Eduardo Alonso. 2002. Ai and agents: State of the art.
Al Magazine, 23(3):25-25.

Anouck Braggaar, Christine Liebrecht, Emiel van Mil-
tenburg, and Emiel Krahmer. 2024. Evaluating task-
oriented dialogue systems: A systematic review of
measures, constructs and their operationalisations.
Preprint, arXiv:2312.13871.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek

321

https://arxiv.org/abs/2312.13871
https://arxiv.org/abs/2312.13871
https://arxiv.org/abs/2312.13871

Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. Journal of Machine Learning
Research, 24(240):1-113.

Justin Cranshaw, Emad Elwany, Todd Newman, Rafal
Kocielnik, Bowen Yu, Sandeep Soni, Jaime Teevan,
and Andrés Monroy-Herndndez. 2017. Calendar.
help: Designing a workflow-based scheduling agent
with humans in the loop. In Proceedings of the 2017
CHI Conference on Human Factors in Computing
Systems, pages 2382-2393.

Zhihua Duan and Jialin Wang. 2024. Exploration of
Ilm multi-agent application implementation based on
langgraph+crewai. Preprint, arXiv:2411.18241.

Laura Farinetti and Lorenzo Canale. 2024. Chatbot
development using langchain: A case study to foster
critical thinking and creativity. In Proceedings of
the 2024 on Innovation and Technology in Computer
Science Education V. 1, pages 401-407. ACM.

Asbjgrn Fglstad and Marita Skjuve. 2019. Chatbots for
customer service: user experience and motivation. In
Proceedings of the st international conference on
conversational user interfaces, pages 1-9.

Sadeep Gunathilaka and Nisansa de Silva. 2025. Au-
tomatic Analysis of App Reviews Using LLMs. In
Proceedings of the Conference on Agents and Artifi-
cial Intelligence, pages 828-839.

Rishi Hazra, Pedro Zuidberg Dos Martires, and Luc De
Raedt. 2024. Saycanpay: Heuristic planning with
large language models using learnable domain knowl-
edge. Preprint, arXiv:2308.12682.

Nevidu Jayatilleke and Nisansa de Silva. 2025. Zero-
shot OCR Accuracy of Low-Resourced Languages:
A Comparative Analysis on Sinhala and Tamil. arXiv
preprint arXiv:2507.18264.

Abhinav Joshi, Areeb Ahmad, Umang Pandey, and
Ashutosh Modi. 2023. Scriptworld: Text based
environment for learning procedural knowledge.
In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI-23,
pages 5095-5103. International Joint Conferences on
Artificial Intelligence Organization. Main Track.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Lukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-

322

http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://arxiv.org/abs/2411.18241
https://arxiv.org/abs/2411.18241
https://arxiv.org/abs/2411.18241
https://doi.org/10.5220/0013375600003890
https://doi.org/10.5220/0013375600003890
https://arxiv.org/abs/2308.12682
https://arxiv.org/abs/2308.12682
https://arxiv.org/abs/2308.12682
https://doi.org/10.24963/ijcai.2023/566
https://doi.org/10.24963/ijcai.2023/566

der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerén Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver? Preprint, arXiv:2302.06476.

Surangika Ranathunga and Nisansa de Silva. 2022.
Some languages are more equal than others: Prob-
ing deeper into the linguistic disparity in the NLP
world. In Proceedings of the 2nd Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 12th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 823—848, Online only.
Association for Computational Linguistics.

Giorgio Robino. 2025. Conversation routines: A
prompt engineering framework for task-oriented dia-
log systems. arXiv preprint arXiv:2501.11613.

Yuanhao Shen, Xiaodan Zhu, and Lei Chen. 2024.
Smartcal: An approach to self-aware tool-use evalua-
tion and calibration. Preprint, arXiv:2412.12151.

Md Nurul Absar Siddiky, Muhammad Enayetur Rah-
man, MD Hossen, Muhammad Rezaur Rahman,
and Md Shahadat Jaman. 2025. Optimizing ai lan-
guage models: a study of chatgpt-4 vs. chatgpt-4o.
Preprints. org.

Keet Sugathadasa, Buddhi Ayesha, Nisansa de Silva,
Amal Shehan Perera, Vindula Jayawardana, Dimuthu
Lakmal, and Madhavi Perera. 2017. Synergistic
union of word2vec and lexicon for domain specific
semantic similarity. In 2017 IEEE international con-
ference on industrial and information systems (ICIIS),
pages 1-6. IEEE.

Mihai Surdeanu, Sonal Gupta, John Bauer, David Mc-
Closky, Angel X. Chang, Valentin I. Spitkovsky, and

Christopher D. Manning. 2011. Stanford’s distantly-
supervised slot-filling system. In Proceedings of the
Text Analysis Conference (TAC 2011). NIST.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Jialin Wang and Zhihua Duan. 2024. Agent ai with lang-
graph: A modular framework for enhancing machine
translation using large language models. Preprint,
arXiv:2412.03801.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024. A survey on large language
model based autonomous agents. Frontiers of Com-
puter Science, 18(6).

Zhenxing Wang. 2025. Optimizing lifelong fine-tuning
for multiple tasks via dataless distribution replay.
In Proceedings of the 31st International Conference
on Computational Linguistics, pages 11261-11273,
Abu Dhabi, UAE. Association for Computational
Linguistics.

Kavindu Warnakulasuriya, Prabhash Dissanayake,
Navindu De Silva, Stephen Cranefield, Bastin
Tony Roy Savarimuthu, Surangika Ranathunga, and
Nisansa de Silva. 2025. Evolution of Cooperation
in LLM-Agent Societies: A Preliminary Study Us-
ing Different Punishment Strategies. arXiv preprint
arXiv:2504.19487.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Kasun Wickramasinghe and Nisansa de Silva. 2023.
Sinhala-English word embedding alignment: Intro-
ducing datasets and benchmark for a low resource
language. In Proceedings of the 37th Pacific Asia
Conference on Language, Information and Computa-
tion, pages 424-435, Hong Kong, China. Association
for Computational Linguistics.

Hui Yang, Sifu Yue, and Yunzhong He. 2023. Auto-
gpt for online decision making: Benchmarks and
additional opinions. Preprint, arXiv:2306.02224.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

Nan Zhang, Zaijie Sun, Yuchen Xie, Haiyang Wu, and
Cheng Li. 2024. The latest version chatgpt powered

323

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2302.06476
https://arxiv.org/abs/2302.06476
https://arxiv.org/abs/2302.06476
https://doi.org/10.18653/v1/2022.aacl-main.62
https://doi.org/10.18653/v1/2022.aacl-main.62
https://doi.org/10.18653/v1/2022.aacl-main.62
https://arxiv.org/abs/2412.12151
https://arxiv.org/abs/2412.12151
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2412.03801
https://arxiv.org/abs/2412.03801
https://arxiv.org/abs/2412.03801
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://aclanthology.org/2025.coling-main.746/
https://aclanthology.org/2025.coling-main.746/
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://aclanthology.org/2023.paclic-1.42/
https://aclanthology.org/2023.paclic-1.42/
https://aclanthology.org/2023.paclic-1.42/
https://arxiv.org/abs/2306.02224
https://arxiv.org/abs/2306.02224
https://arxiv.org/abs/2306.02224
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

by gpt-40: what will it bring to the medical field?
International Journal of Surgery, 110(9):6018-6019.

A Functional Agent Prompt List

This section provides the prompts used for each
functional agent in our system. These prompts
guide the agent’s behavior and are critical to ensur-
ing alignment with task objectives.

Event Scheduler Agent Prompt

You are an assistant designed to schedule
events in Google Calendar. You work
under a supervisor chatbot who
communicates with a user.

*%*CRITICAL WORKFLOW - YOU MUST FOLLOW
THIS EXACTLY :*x

1. When a user wants to schedule ANY
event, you MUST FIRST use °
check_calendar_conflicts(
event_details)‘ to check for
conflicts

2. You CANNOT skip this step - it is
mandatory for every scheduling
request

3. If conflicts are found, inform the
user about the conflicts and ask
them to choose a different time

4. If NO conflicts are found, then
proceed to create the event using
create_calendar_event (event_details
)¢

5. Always return the event_id when an
event is successfully created

¢

% IMPORTANT RULES : %%

- NEVER use ‘create_calendar_event
without first using ¢
check_calendar_conflicts ¢

- ALWAYS check for conflicts before
scheduling

- If there are conflicts, clearly
explain what conflicts exist and
suggest alternative times

- If no conflicts, proceed with
scheduling and provide the event
details

- Always be helpful and provide clear
information about availability or
conflicts

**xExample workflow:x*x

1. User says: "schedule meeting with
John tomorrow at 2 PM"

2. You MUST first call: ¢
check_calendar_conflicts(
event_details) ¢

3. If conflicts found: Tell user about
conflicts

4. If no conflicts: Call ¢
create_calendar_event(event_details

X

Your role is to schedule events safely.
Today is {today_date}.

\

Event Remover Agent Prompt

You are a calendar assistant designed to
delete/remove the user’s google
calendar events. You can do two types
of requests.You work under a supervisor

chatbot who communicate with a user.:

- The chatbot_supervisor provides an
event_Id.

- Then use the tool ‘delete_event(
event_Id)‘ to delete an event from
the calendar.

- If you need more details ask from the
chatbot.like event_ID not provided.

Your role is to remove calendar events.

\

Availability Checker Agent Prompt

You are a calendar checker assistant
designed to Check Availability.You work
under a supervisor chatbot who
communicate with a user.:

- The chatbot_supervisor provides a
start and end date which got from
the user.

- Use the tool ‘check_availability(
start_date, end_date)‘ to verify if

the user is available during that
time range.

- If you need more details ask from the
chatbot.

- When you provide the chatbot events
also provide event IDs.

Your role is to Check user Availability.
And Today is {today_date}.

\

Event Modifier Agent Prompt

You are a calendar assistant designed to
modify, edit, or update the user’s
Google Calendar events. You work under
a supervisor chatbot who communicates
with the user.

Instructions:
- The supervisor chatbot will provide
the details that need to be updated

- Then, use the ‘update_event‘ tool to

update the event accordingly.

Your primary role is to assist in
editing calendar events.

324

	Introduction
	Related Work
	Limitations of Traditional Scheduling Dialogue Systems
	Advancing to LLM-Based Multi-Agent Systems
	Multi-Agent Approaches to Scheduling Assistants

	Methodology
	Multi-Agent System Architecture
	Implementation Details
	Distributed Supervisor and Scalability Enhancements

	Experiments
	Results
	Zero-Shot Multilingual Evaluation
	User Study Metrics
	Qualitative Observations and Error Analysis

	Conclusion
	Privacy and Ethical Considerations
	Limitations
	Future Work
	Appendix
	Functional Agent Prompt List

