

 Non-Interactive Symbolic-Aided Chain-of-Thought for Logical

Reasoning

Phuong Minh Nguyen, Tien Huu Dang, Naoya Inoue

Proceedings of the 39th Pacific Asia Conference on
Language, Information and Computation (PACLIC 39)

Emmanuele Chersoni, Jong-Bok Kim (eds.)

2025

© 2025. Phuong Minh Nguyen, Tien Huu Dang, Naoya Inoue. Non-Interactive Symbolic-Aided
Chain-of-Thought for Logical Reasoning. In Emmanuele Chersoni, Jong-Bok Kim (eds.),
Proceedings of the 39th Pacific Asia Conference on Language, Information and Computation
(PACLIC 39), 334-345. Institute for the Study of Language and Information, Kyung Hee
University. This work is licensed under the Creative Commons Attribution 4.0 International
License.

Non-Interactive Symbolic-Aided Chain-of-Thought
for Logical Reasoning

Phuong Minh Nguyen and Tien Huu Dang and Naoya Inoue

Japan Advanced Institute of Science and Technology
{phuongnm,tiendh,naoya-i}@jaist.ac.jp

Correspondence: phuongnm@jaist.ac.jp

Abstract
This work introduces Symbolic-Aided Chain-
of-Thought (CoT), an improved approach to
standard CoT, for logical reasoning in large
language models (LLMs). The key idea is to
integrate lightweight symbolic representations
into few-shot prompts, structuring the infer-
ence steps with a consistent strategy to make
reasoning patterns more explicit within a non-
interactive reasoning process. By incorporat-
ing these symbolic structures, Symbolic-Aided
CoT preserves the generalizability of stan-
dard prompting techniques while enhancing the
transparency, interpretability, and analyzability
of LLM logical reasoning. Extensive experi-
ments on four well-known logical reasoning
benchmarks—ProofWriter, FOLIO, ProntoQA,
and LogicalDeduction, which cover diverse rea-
soning tasks and scenarios—demonstrate the
effectiveness of the proposed approach, partic-
ularly in complex reasoning tasks that require
navigating multiple constraints or rules. No-
tably, Symbolic-Aided CoT consistently im-
proves LLMs’ reasoning capabilities across
various model sizes and significantly outper-
forms conventional CoT on three out of four
datasets, ProofWriter, ProntoQA, and Logi-
calDeduction.

1 Introduction

In recent years, pre-trained Large Language Mod-
els (LLMs) have achieved exceptional success
across a wide spectrum of Natural Language Pro-
cessing (NLP) tasks (Wei et al., 2022; Shin and
Van Durme, 2022; Dubey et al., 2024; Yang et al.,
2025). As a result, LLMs have become a cen-
tral paradigm in NLP research and applications.
Their impressive performance is largely attributed
to their ability to perform few-shot in-context learn-
ing—the mechanism by which models infer solu-
tions based solely on the format and structure of
the input prompt, without requiring gradient com-
putations (Brown et al., 2020; Garg et al., 2022;
Wei et al., 2022).

Context:

CoT:

Constraints
decomposing

(Rule1):

(Rule2):

(Rule N):

Symbolic-Aided CoT:

Question:

...

Answer:
True / False / Uncertain

Thoughts:

Q
R1
R2

RN

T1 T2 TK
...

C : Textual data

Legend

: Action

=> KB = { }
=> F(KB(), Rule21) =>
=> KB = { }
=> F(KB(), Rule23) =>
=> ...
=> KB = { ... }
=> Validate(,KB())=True/False/Un..

P2`

P1

Q

Figure 1: Comparison between standard CoT and
Symbolic-Aided CoT for logical reasoning tasks.

Notably, as model size grows, prompting meth-
ods that leverage intermediate reasoning steps con-
sistently surpass standard input–output prompting
methods. This reasoning strategy, known as Chain-
of-Thought prompting (CoT; Wei et al. (2022)),
relies on explicitly modeling the reasoning process.
For in-context learning, the CoT reasoning tech-
nique has demonstrated compelling results across
a variety of NLP tasks (Wei et al., 2022; Zhou
et al., 2023). Despite recent advancements, ap-
plying LLMs to logical reasoning tasks still faces
several critical challenges, including conflicts be-
tween pretrained knowledge and counterfactual as-
sumptions (Ortu et al., 2024), failures on cyclic
inference graphs (Zhang et al., 2025), and planning
errors during the solving process (Ye et al., 2023).

To address these issues, various strategies have
been proposed, which can be broadly categorized
into two main groups: (1) designing an external
symbolic solver, which delegates the actual reason-
ing process to an automated theorem prover (Ye
et al., 2023; Pan et al., 2023) or programming lan-
guages (Gao et al., 2023; Xu et al., 2024a); and
(2) constructing a framework that systematically
decomposes complex tasks into subtasks—such as
rule selection, premise inference, and scoring—to
enhance the overall reliability of the system (Zhang

334

mailto:phuongnm@jaist.ac.jp

et al., 2025; Feng et al., 2024; Sun et al., 2024; Xu
et al., 2024b). Although the first approaches poten-
tially achieve remarkable performance, they typi-
cally require powerful LLMs (Ye et al., 2023; Gao
et al., 2023) such as GPT-4 (Achiam et al., 2023) or
additional extensive pre-training phase (Xu et al.,
2024a; Feng et al., 2024) for successful parsing
from problem description to the logical forms (e.g.,
First-order logics - FOL).

In this study, we focus on the second approach,
which aims to improve LLM logical reasoning
without relying on any external symbolic rea-
soner or programming language. Building on
insights from recent works (Sun et al., 2024; Qi
et al., 2025; Zhang et al., 2025), we target the chal-
lenge of designing a mechanism to systematically
decompose complex logical reasoning tasks into
simpler subtasks that can be solved by the inherent
understanding ability of LLMs in a single infer-
ence pass. Closely related to our work, Xu et al.
(2024a); Feng et al. (2024) recently introduced
LLM-based frameworks that leverage first-order
logic—a strict formal language with well-defined
syntax and semantics—to support faithful logical
reasoning. However, previous studies (Sun et al.,
2024; Xu et al., 2024b; Zhang et al., 2025) primar-
ily rely on self-refinement or interactive (multi-
turn) generation, where each turn solves a sub-
task and its output is passed to the next. They
overlook non-interactive reasoning, in which the
LLM performs the entire reasoning process with-
out any assistance from external modules or sub-
processes. To address this gap, we explore non-
interactive (single-turn) reasoning generation, al-
lowing a more direct and fair comparison with CoT
prompting.

We introduce Symbolic-Aided CoT, a novel vari-
ant of CoT (Wei et al., 2022), designed to lever-
age symbolic representations to enhance the non-
interactive logical inference capabilities of LLMs
(Figure 1). In conventional CoT, intermediate rea-
soning steps are provided in few-shot demonstra-
tions as unstructured text, enabling LLMs to ap-
proximate the logical reasoning process. How-
ever, relying solely on textual descriptions for com-
plex reasoning introduces ambiguity, as the inher-
ent vagueness of natural language limits LLMs’
ability to generalize precise reasoning steps. Our
core idea is to integrate lightweight symbolic struc-
tures into few-shot prompts, making the inference
steps more transparent and structured, while si-
multaneously strengthening the induction-head be-

havior of LLMs (Olsson et al., 2022). Specifi-
cally, our Symbolic-Aided CoT prompting frame-
work explicitly outlines essential reasoning sub-
steps: rule matching—selecting constraint rules
that align with the current state of inference, new
premise inference—applying the selected rules to
generate new premises, and knowledge base (KB)
updating—appending the newly inferred premises
to the KB. By incorporating these symbolic struc-
tures, our method preserves the flexibility and gen-
eral applicability of standard prompting techniques
while enhancing both the interpretability and ana-
lyzability of LLM reasoning behavior. Empirical
evaluations across four reasoning QA benchmarks,
ProofWriter, FOLIO, ProntoQA, and LogicalDe-
duction, demonstrate the effectiveness of our ap-
proach, particularly in scenarios involving complex
reasoning that requires navigating multiple rules
and constraints. Remarkably, our Symbolic-Aided
CoT, when applied with open-source LLMs (e.g.,
Qwen3), achieves performance comparable to that
of a complex multi-turn reasoning framework (Sun
et al., 2024) built on the powerful GPT-4 model,
particularly on the ProofWriter, ProntoQA, and
LogicalDeduction datasets.

The remainder of this paper is organized into
five sections. Section 2 provides an overview of
logical reasoning tasks and compares our approach
with prior studies. Section 3 presents the details of
our proposed framework and its variants. Section 4
describes the experimental setup and reports the
results, with key findings discussed in Section 5. Fi-
nally, the conclusions summarize our contributions
and outline directions for future work are presented
in Section 6.

2 Background and Related Work

2.1 Background

Notation and problem formulation. Logical
reasoning is a fundamental NLP task within the
Question Answering domain (Weston et al., 2015;
Tafjord et al., 2021). In this task, machine learning
models are required to answer a question based on
a context containing multiple logical conditions
or constraints. Formally, we denote the list of
rules (or constraints) provided in the context as
R = {ri}0≤i<N . Given a question (Q), the cor-
rect answer (A) must be derived from knowledge
supported by a subset of rules R∗ ⊂ R. To address
the challenges posed by logical reasoning, prior re-
search largely falls into two overarching directions:

335

utilizing external symbolic solvers and developing
LLM-based logical solvers.

In the first approach, the main idea is to lever-
age LLMs to translate textual descriptions of con-
straints and the question into formal logical for-
mulas, which are then passed to an explicit sym-
bolic solver (e.g., the Z3 theorem prover1) to de-
rive the final answer. Formally, all constraints
are aggregated to construct a logical program:
F = {LLMlang2logic(ri)}ri∈R. Similarly, the ques-
tion is also transformed to the logical form f q =
LLMlang2logic(Q). Then, a symbolic reasoner is rea-
soned over the transformed logical forms to yield
the final answer: SymbolicReasoner(F , f q).

In the second approach, the original logi-
cal reasoning problem is decomposed into a se-
quence of subtasks. Each subtask is solved in-
dividually, and the process iterates over multi-
ple turns until a specified stopping condition is
satisfied, ultimately producing the final result:
Loop([LLMsubtaskt(R,Q)]t) where subtaskt may
represent an arbitrary LLM-based unit function
such as rule matching, rule inference, or new
premise scoring, among others. These sub-tasks
are typically carefully designed and arranged with
sequential dependencies, with the aim of mitigating
hallucinations.

2.2 Related Works
Building on the success of LLMs across a wide
range of NLP tasks (Chung et al., 2024; Dubey
et al., 2024; Yang et al., 2025), logical reasoning
has emerged as a particularly important area of
study, serving as a key benchmark for evaluating
both the reasoning capabilities and the overall in-
telligence of these models (Zhou et al., 2023; Feng
et al., 2024). As aforementioned, we categorize
recent work into two main approaches:

Utilizing external symbolic solvers. In this line
of work, the main challenge lies in transforming
the description of constraints into logical formu-
las, LLMlang2logic, effectively functioning as a se-
mantic parser. More specifically, Yao et al. (2023)
introduced a method to enrich CoT prompting by
leveraging results from external APIs, invoking
functions to retrieve supplementary information.
Building on this idea, Gao et al. (2023) proposed an
approach that augments the intermediate reasoning
steps of CoT reasoning through a runtime environ-
ment (e.g., a Python interpreter), which has proven

1https://github.com/Z3Prover/z3

particularly effective for mathematical reasoning
tasks. Further, Pan et al. (2023); Ye et al. (2023);
Olausson et al. (2023) enhanced the performance
of logical reasoning by translating all constraints
in a sample into logical forms, completing a logi-
cal program, and solving it using an independent
symbolic reasoner. In addition, Xu et al. (2024a)
strengthened the logical-form parsing process of
the open-source LLMs by leveraging fine-tuning
on a large-scale, curated dataset. In contrast, our
method does not rely on any external symbolic
solver; instead, it integrates symbolic syntax di-
rectly into the reasoning process, aiming to enable
the LLM itself to reason as a symbolic solver.

LLM-based logical solvers. This approach lever-
ages LLMs directly by designing frameworks
that decompose complex reasoning tasks into
smaller, manageable subtasks—such as rule selec-
tion, premise derivation, and scoring—to enhance
overall reasoning robustness (Zhang et al., 2025;
Feng et al., 2024; Sun et al., 2024). In particu-
lar, Sun et al. (2024); Xu et al. (2024a) introduced
a framework that enables LLMs to uncover hid-
den premises and integrates scoring components
through a multi-turn reasoning process. Similarly,
Zhang et al. (2025) proposed a framework that
incrementally refines reasoning via three subcom-
ponents: Proposer, Verifier, and Reporter. Finally,
Feng et al. (2024) presented LoGiPT, a method
that enhances LLMs’ ability to function as logi-
cal solvers by learning the reasoning process step
by step through additional training on large-scale
data collected from the reasoning traces of external
symbolic solvers. Compared to our work, LoGiPT
similarly performs step-by-step reasoning as a log-
ical solver and can produce a proof tree at the end;
however, our method achieves competitive perfor-
mance without the need for any additional training.

3 Methodology

In this section, we present our Symbolic-Aided
CoT method, its variants, and the motivation be-
hind it in comparison with baseline prompting
techniques: Standard - which directly provides
an answer without any reasoning - and CoT (Wei
et al., 2022) - which produces an answer accom-
panied by step-by-step reasoning. All of these
prompting methods are augmented with a hard-
selected few-shot examples included in the prompt
(Qi et al., 2025). All prompts are directly fed for-
ward through the LLM to obtain the final predicted

336

https://github.com/Z3Prover/z3

answer in a single turn:

Aout = LLMs(prompting(R, Q)) (1)

In this setup, the LLM is solely responsible for
generating the desired answer given the contex-
tual input. The prompting component consists of a
few-shot template designed to help the LLM under-
stand the task description while leveraging its own
knowledge to reason over the list of provided rules
in the contextual information. For clarity, the tem-
plates for Standard and CoT prompting are shown
in the first two rows of Table 1.

Table 1: Template of input and output for prompting
techniques: Standard and CoT and Symbolic-Aided CoT.

Standard
(Input)

Context: [[All constraints, R]]
Question: [[Content of the question, Q]]
Options: A) True B) False C) Uncertain

Standard
(Output)

The correct option is:
{ "answer": [[A]] }

CoT
(Input)

Context: [[All constraints, R]]
Question: [[Content of the question, Q]]
Options: A) True B) False C) Uncertain

CoT
(Output)

The correct option is:
{
"reasoning": [[reasoning content]] ,
"answer": [[A]]
}

Symbolic-
Aided
CoT
(Input)

Let us define F as a function that infers new
premises based on a given list of facts and rules. Using
these facts and rules, provide a reasoning path that leads
to one of the values of a Validate function: True, False,
or Uncertain.
——
Example1: Given list of facts and rules:

(Rule[[i]]): [[content of ri ∈ R]] · · ·

(Question): [[content of the question, Q]]
Symbolic-
Aided
CoT
(Output)

(Answer): Start from the object and their condition
mentioned in the question to collect relevant facts:
KB = { }

=> F(KB([[premises in KB]]), Rule[[i′]]) => [[in-
ferred premises]]
KB = {[[KB values for each reasoning steps]]}

validate the question with the current inferred premise
=> Validate(Question=[[Q]], KB([[selected
premise]])) = [[A]].

3.1 Symbolic-Aided CoT

We formulate logical reasoning tasks into three
fundamental sub-tasks, namely, reasoning opera-
tors: rule matching, rule inference, and knowledge
base updating. Previous frameworks, such as De-
termLR (Sun et al., 2024) and CR (Zhang et al.,
2025), were also built on carefully designed unit
operators, integrating them with procedural pro-
gramming to process the outputs of LLMs. The
key difference between our Symbolic-Aided CoT
and these approaches is that Symbolic-Aided CoT
is conceived entirely as an LLM-driven program.

In our design, the LLM is expected to learn the flow
of the logical reasoning process from a few-shot
demonstration. To this end, the LLM has full visi-
bility of all sub-reasoning steps and autonomously
decides which step to execute next. The overview
of our Symbolic-Aided CoT is presented in the
third row of Table 1, which illustrates the instruc-
tion text, list of rules, question, and reasoning-flow
examples. For a clearer explanation, we elaborate
on the two gray blocks shown in this table, which
pertain to rule tagging and reasoning operators in
our Symbolic-Aided CoT.

Rule tagging. In preparing the prompt input, we
first segment the contextual information into a list
of rules by splitting it into individual sentences
using the NLTK toolkit2. Each sentence is then
tagged with its order index (e.g., Rule5 for the fifth
sentence), allowing the LLM to track and refer-
ence the reasoning steps. Here, we assume that the
LLMs can link each rule’s content to its correspond-
ing tag and reference this symbol appropriately in
the reasoning flow in subsequent steps.

Reasoning operators. This demonstration serves
as the core example that enables LLMs to learn, in
context, the pattern for solving logical reasoning
tasks. We use a set of symbols, similar to those
in programming languages, to represent the infer-
ence flow (see Figure 2). At each reasoning step,
the LLM selects the relevant rules and premises
from the current knowledge base (KB) to infer new
premises. Each newly inferred premise is then ap-
pended to the KB for use in the next inference
step. A breadth-first search strategy is applied to
traverse the nodes (premises), as illustrated in Fig-
ure 2. Inspired by how humans solve such tasks,
we maintain a KB state to prevent cyclical infer-
ence loops: if a newly inferred premise already
exists in the KB, it is not added again. All patterns
of rule selection, inference, and KB updating are
implicitly conveyed within the demonstrations pro-
vided in the few-shot prompts, allowing the LLM
to internalize these reasoning steps.

4 Experiment and Analysis

In this section, we present a detailed description of
our experiments, together with the results and anal-
yses, to assess the effectiveness of our Symbolic-
Aided CoT prompting in comparison to standard
CoT and prior methods.

2https://www.nltk.org/

337

https://www.nltk.org/

a

b

c

d

e

f

h target node

begin node

R1 R2

R3

R4

R5R6

R7

KB= { a }
=> F(KB(a), R1) => b
=> F(KB(a), R2) => c
KB = {a, b, c}
=> F(KB(b), R4) => e
=> F(KB(b), R3) => d
KB = {a, b, e, d}
=> F(KB(e), R5) => f
=> F(KB(d), R7) => h
KB = {a, b, d, e, f, h}

Reasoning flow demonstrationGraph of inference rules

Figure 2: Left: Graphical model of inference rules.
Right: Reasoning flows in the Symbolic-Aided CoT
demonstrations.

4.1 Experimental Setup
Datasets. We conducted experiments on four
well-known benchmark datasets about the logical
reasoning task: (1) ProofWriter (Tafjord et al.,
2021) - we use the subset under the open-world
assumption, where each sample has three possible
answer options: true, false, or unknown. Follow-
ing Pan et al. (2023), we evaluate on the subset
with the longest reasoning depth (5 hops), which
contains 600 cases. (2) FOLIO (Han et al., 2024)
is a challenging, expert-curated dataset for logi-
cal reasoning that contains rules closely aligned
with real-world knowledge. Following the setup of
previous work (Sun et al., 2024), we evaluate our
method on a subset of this dataset comprising 204
examples. (3) ProntoQA introduced by Saparov
and He (2023) - similar to the ProofWriter dataset,
we also choose the hardest subset of this data with
5-hop reasoning across 500 samples for the evalu-
ation, following previous works (Sun et al., 2024;
Qi et al., 2025); (4) LogicalDeduction (Srivastava
et al., 2023) is a dataset for logically identifying
the order of objects given a list of description con-
straints. We follow the previous setting from Sun
et al. (2024), using 300 evaluation samples contain-
ing all subsets of three, five, and seven objects (the
greater the number of objects, the more complex
the logical reasoning required to determine their
order).

Evaluation metric. In order to evaluate system
performance, we use Accuracy as the metric, which
is standard and allows for direct and fair compar-
ison with previous works (Pan et al., 2023; Sun
et al., 2024; Qi et al., 2025).

Setting. We conducted our experiments
primarily on open-source LLMs, including

Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) and the Qwen-3 models (Yang et al., 2025).
Specifically, we aim to evaluate the effectiveness
of our Symbolic-Aided CoT compared to standard
CoT and standard prompting on these LLMs. In
addition, we performed extensive experiments on
the Qwen-3 models across various sizes—1.7B, 4B,
8B, and 32B—to further assess the scalability and
effectiveness of our proposed prompting method.
Finally, for comparison with previous approaches,
we also conducted extensive experiments on a
powerful closed-source LLM, GPT-4 (Achiam
et al., 2023), to evaluate our proposed method.
For open-source models, we use greedy decoding
to generate the answer i.e., the token with the
maximum logit is picked.

4.2 Main Results

For the main results across all benchmark datasets,
ProofWriter, FOLIO, and ProntoQA, we present
the performance of our Symbolic-Aided CoT com-
pared with Standard Prompting, CoT Prompting,
and previous methods in Table 2.

Overall performance. These results demon-
strate the clear superiority of our proposed
method over the standard CoT on three datasets,
ProofWriter, ProntoQA, and LogicalDeduc-
tion. Notably, on the ProofWriter dataset,
Symbolic-Aided CoT significantly outperforms
CoT, achieving improvements of 15% and
21%, 22% on the Qwen-3-8B, Qwen-3-14B, and
Llama3.1-8B-Instruct models, respectively. In
addition, the improvement is clearly observed
on the LogicalDeduction and ProntoQA datasets
across three open-source LLMs. These findings
further highlight that the degree of improvement
varies across different LLMs. The effective-
ness of Symbolic-Aided CoT largely depends
on each model’s ability to understand logical
relationships and recognize logical matching
patterns embedded within the few-shot prompts.
Moreover, our method is simple yet effective,
achieving competitive performance compared to
prior works such as Logic-LM (Pan et al., 2023)
and DetermLR (Sun et al., 2024), even when those
methods are supported by a more powerful GPT-4
model.

On the FOLIO dataset, the results show that
the Symbolic-Aided approach has a weakness
compared to CoT prompting, especially with the
Qwen-14B LLM. We found that the FOLIO dataset

338

is specifically designed by experts to cover vari-
ous aspects of factual knowledge, which allows
the CoT prompting technique to leverage this ad-
vantage (leaking factual knowledge) when solving
questions. For example, in a question about the
tennis player Djokovic, CoT prompting tends to
use external knowledge such as “Djokovic is fa-
mous and is an athlete” , which is not provided in
the set of facts in the context, to support the infer-
ence flow. In contrast, our Symbolic-Aided CoT
approach relies strictly on the inference rules given
in the context.

Finally, we evaluate our proposed method in the
setting that uses GPT-4 as the backbone LLM for
the reasoning task (last row of Table 2). Compared
to the SymbCoT framework (Xu et al., 2024a), our
method achieves superior performance on Pron-
toQA but lower performance on other datasets.
This difference can be attributed to SymbCoT’s use
of complex interactive reasoning sub-steps—such
as translator, planner, solver, and verifier—each
supported by carefully designed prompts tailored
to the specific sub-step and logical reasoning task.
Overall, our method surpasses the performance of
previous methods on the ProntoQA dataset and
achieves remarkable results on the ProofWriter,
FOLIO, and LogicalDeduction datasets. These re-
sults demonstrate the robustness of our approach,
even in the stringent setting that uses only non-
interactive inference without the support of an ex-
ternal solver or multi-step inferences, such as the
DetermLR (Sun et al., 2024) or LogicLM (Pan
et al., 2023) approaches.

Impact of model size on performance. To as-
sess the effectiveness of our Symbolic-Aided CoT
across different model sizes, we conducted experi-
ments using various Qwen LLMs on ProofWriter
(Figure 3) and LogicalDeduction (Figure 4)
datasets. These results demonstrate that our method
consistently outperforms both CoT and standard
prompting across model sizes. Furthermore, our ap-
proach appears to encourage LLMs to more explic-
itly articulate the underlying logical reasoning pat-
terns, even in small-scale models. For example, on
the ProofWriter dataset, Qwen3-8B achieves perfor-
mance comparable to that of the 32B model. On the
LogicalDeduction dataset, Qwen3-8B attains 86.9%
of the performance of the 32B model. We argue that
our Symbolic-Aided CoT decomposes the original
complex logical reasoning tasks into sub-reasoning
operations–such as selecting rules, generating new

premises, and extending KB premises–that can be
effectively addressed by smaller language models.

1.7 4 8 14 32

60

80

58.17

74.33
78.67 77 79.17

#params (B)

Acc.

Symbolic-Aided CoT CoT Standard

Figure 3: Performance across different model sizes
of Qwen-3 with three prompting techniques on the
ProofWriter dataset.

1.7 4 8 14 32

60

80

48.67

74.33
77.33

86.33 89

#params (B)

Acc.

Symbolic-Aided CoT CoT Standard

Figure 4: Performance across different model sizes of
Qwen-3 with three prompting techniques on the Logi-
calDeduction dataset.

Ablation studies. For evaluating the contribu-
tion of each sub-component in our Symbolic-
Aided CoT prompting, we conduct two ab-
lation studies: (1) removing the KB-tracking
variables (SymbolA.CoT−KBtracking), which re-
moves the text segment “#KB = [[KB values
for each reasoning step]]” in Table 1, and
(2) removing the symbolic Validate function
(SymbolA.CoT−Validate), which removes the text
segment “Validate(Question=[[Q]], KB([[selected
premise]]))” in Table 1. The ablation results
(shown in Figure 5) indicate that KB-tracking vari-
ables play an important role in the reasoning pro-
cess, helping LLMs avoid loops in the conferenc-
ing process. Furthermore, KB-tracking intuitively
provides additional features to the hidden represen-
tation of premises, allowing the model to distin-
guish inferred premises from conditional premises
in the constraint rules. In another aspect, the sym-
bolic Validate function in our Symbolic-Aided
CoT helps LLMs refer back to the original question

339

Table 2: Performance comparison among different methods. E.Solver refers to the system supported by an external
symbolic solver module. ICL stands for in-context learning, and Supervised FT stands for the supervised fine-tuning
approach. The best is marked.

Methods Learning paradigm Interaction mode ProofWriter FOLIO ProntoQA L.Deduction

Llama3.1-8B-Instruct
Fine-tuned ID (Qi et al., 2025) Supervised FT Non-Interactive 71.67 70.00 — —
Standard ICL few-shot Non-Interactive 36.83 53.92 51.80 40.67
CoT ICL few-shot Non-Interactive 44.83 56.86 74.00 58.00
Symbolic-Aided CoT (ours) ICL few-shot Non-Interactive 68.67 55.88 89.00 59.33

Qwen3-8B
Standard ICL few-shot Non-Interactive 60.00 62.25 80.80 57.00
CoT ICL few-shot Non-Interactive 57.83 66.67 95.80 72.67
Symbolic-Aided CoT (ours) ICL few-shot Non-Interactive 78.67 65.69 97.20 77.33

Qwen3-14B
Standard ICL few-shot Non-Interactive 46.50 67.16 77.80 61.67
CoT ICL few-shot Non-Interactive 62.67 74.02 97.20 81.67
Symbolic-Aided CoT (ours) ICL few-shot Non-Interactive 77.00 65.20 97.80 86.33

GPT-4
CoT (Sun et al., 2024) ICL few-shot Non-Interactive 67.41 67.65 91.00 73.33
Logic-LM (Pan et al., 2023) ICL few-shot Interactive +E.Solver 79.66 78.92 83.20 87.63
DetermLR (Sun et al., 2024) ICL few-shot Interactive +Programming 79.17 75.49 98.60 85.00
SymbCoT (Xu et al., 2024a) ICL few-shot Interactive +Programming 82.50 83.33 99.60 93.00
Symbolic-Aided CoT (ours) ICL few-shot Non-Interactive 77.09 74.51 100.00 86.33

LLama-3.1-8B Qwen3-8B Qwen3-14B

40

60

80

A
cc

ur
ac

y
(%

)

CoT SymbolA.CoT−KB tracking

SymbolA.CoT−Validate SymbolA.CoT

Figure 5: Ablation study on the Symbolic-Aided CoT
(SymbolA.CoT).

in the context to select the appropriate premise for
logical matching and producing the final answer.

4.3 Result Analysis

Confusing ratio. Here we report the confu-
sion matrices (Figure 6) of the answers in the
ProofWriter dataset, generated by the Qwen-8B
model. For both methods, the original CoT and
our Symbolic-Aided CoT, the recall score for False
questions is the highest, followed by True and Un-
certain. This is due to the complex nature of the log-
ical reasoning task, which involves multi-hop rea-
soning steps; reasoning paths leading to wrong con-
clusions are typically more numerous than those
leading to correct ones. Comparing our Symbolic-
Aided CoT to the original CoT, our method shows
improvement across all three question types. The

main improvement comes from reducing confu-
sion in Uncertain questions, decreasing misclassi-
fication as True or False. We argue that, through
symbolic injection, our method encourages clearer
logical patterns and structure, thereby enhancing
the logical reasoning ability of LLMs.

A B C
Predicted label

A

B

C

Tr
ue

 la
be

l

0.63 0.05 0.32

0.11 0.71 0.18

0.27 0.17 0.57

A B C
Predicted label

A

B

C

Tr
ue

 la
be

l
0.85 0.01 0.14

0.01 0.89 0.10

0.23 0.14 0.620.2

0.4

0.6

0.2

0.4

0.6

0.8

Figure 6: Result comparison with confusion matrices
between our Symbolic-Aided CoT (right) and the orig-
inal CoT (left). The labels A, B, and C refer to the
answers True, False, and Uncertain, respectively.

Semantic representation of symbolic tokens.
Here, Figure 7 visualizes the semantic represen-
tation of symbolic tokens using principal compo-
nent analysis (PCA) based on the last layer’s output
hidden states of the LLM Qwen-3-14B. This exper-
iment aims to analyze, at a low level, how LLMs
understand symbolic tokens in our Symbolic-Aided
CoT prompting. We found that LLMs can clearly
distinguish the meaning of symbolic tokens (pur-
ple data points) from sample content tokens in our
proposed prompting method. This is because these
logical tokens play the role of structuring the in-
ference flow (latent reasoning pattern) of LLMs,
which is separate from the content words in facts

340

and rules. Through few-shot in-context learning,
these tokens are represented in a distinct semantic
space. Via the self-attention mechanism, logical to-
kens are paired with content tokens to yield features
specific to reasoning operators (such as matching
rules or inferring new premises). This suggests that
LLMs can uncover the hidden patterns of logical
reasoning operators implied by the symbolic tokens
within few-shot learning.

150 100 50 0 50 100
PC1

50

0

50

100

150

PC
2

------- ###

 Example
3

:

 Given

 list

 of

 facts

 and

 rules

:

#

 (

Rule

1

):

 the

.

#

 (

Rule 2

):

 the

.

#

 (

Rule

3

):

 is

.

#

 (

Rule

4

):

 the

.

#

 (

Rule

5

):

 the

.

#

 (

Rule

6

):

 the
.

#

 (

Rule
7

):

 is

.

#

 (

Rule8

):

 is

.

#

 (

Rule
9

):

 is

.

#

 (

Rule

1

0

):

 the

.

#

 (

Rule

1

1

):

 the

.

#

 (

Rule

1

2

):

 is
.

#

 (

Rule

1

3

):

 is
.

#

 (

Rule

1

4

):

 the

.

#

 (

Rule

1

5

):

 is
.

#

 (

Rule

1

6

):

 the

.

#

 (

Rule

1

7

):

 the
 the

.

#

 (

Rule

1

8

):

 the

 and

 the

 is
 is

.

#

 (

Rule

1

9

):

 the
 the the

 the

.

#

 (

Rule
2

0

):

 the the

 the

.

#

 (

Rule

2

1

):

 is

 the

.

#

 (

Rule

2

2

):

 the the

.

#

 (

Rule

2

3

):

 the

 is

 and

 the the
 the the

.

#

 (

Rule

2

4

):

 the the

.

#

 (

Question
):

 Based on

 the

 above

 information

,

 is

 the

 following
 statement

 true

,

 false

,

 or

 unknown

?

 the

.

#

 (

Answer

): the

 and

 the

 question facts

:

,

 the

#

 KB

 =

 {}

=>

 Rule

1

 =

 `

 the

`

=>
 Rule

2

 =

 `

 the

`

=>

 Rule

3

 =

 `

 is

`

=> Rule

4

 =

 `

 the

`

=>

 Rule

5

 =

 `

 the

`

=>

 Rule

6

 =

 `

 the

`
#

 KB

 =

 {

 the

,

 the

,

 is

,

 the

,

 the

,

 the

}

=>

 F

(K

('

 the

'), Rule

2

4

)

 =>

 `

 the

`

#

 KB

 =

 {

 the

,

 the

,

 is

,

 the

,

 the

,

 the

,

 the

}

=>

 F

(K

('

 the

'), Rule
2

2

) =>

 `

 the

`

#

 KB

 =

 {

 the

,

 the

,

 is

,

 the

,

 the

,

 the

,

 the

,

 the

}

 #

 valid

 the

 question

 with

 current

 infer

=>

 Validate

(Q

=`

 the

`, KB

('

 the

'))

 =

 True

.

-------------- ###

 Example
3

:
 Given

 list

 of

 facts

 and

 rules

:

#

 (

Rule

1

):

 is

.

#

 (

Rule 2

):

 is

.

#

 (

Rule 3
):

 is

.

#

 (

Rule

4
):

 is

.

#

 (

Rule
5

):

 is

.

#

 (

Rule

6
):

 is

.

#

 (

Rule

7):

 is

.

#

 (

Rule

8
):

 is

.

#

 (

Rule

9
):

 is

.

#

 (

Rule

1

0

):
 is.

#

 (

Rule

1

1): is.

#

 (

Rule

1

2):.

#

 (

Rule

1

3

):

 is

.

#

 (

Rule

1

4

):

 is

.

#

 (

Rule

1

5

):

 is

.

#

 (

Rule

1

6

):

,

.

#

 (

Rule

1

7
):

 is

.

#

 (

Question
):

 Based
 on

 the

 above

 information

,

 is

 the

 following
 statement

 true

,

 false

,

 or

 unknown

? is

.

#

 (

Answer

):
 the

 and

 the

 question
 facts

:

,

 is

#

 KB

 =

 {}

=>

 Rule

4

 =

 `

 is

`

#

 KB

 =

 {

 is

}

=>

 F

(K

('

 is

'),

 Rule

1

3

)

 =>

 `

 is

`

#

 KB

 =

 {
 is

,

 is

}

=>

 F

(K

('

 is

'),

 Rule

1

7

) =>

 `

 is

`

#

 KB

 =

 { is

,

 is
,

 is

}

=>

 F

(K

('

 is

'),

 Rule

1

4

)

 =>

 `

 is

`

#

 KB

 =

 { is

,

 is

,

 is ,

 is

}

=>

 F

(K

('

 is

'),

 Rule

1

2

)

 =>

 `

 is

`

#

 KB

 =

 { is

,

 is

,

 is

,

 is

,

 is

}

=>

 F

(K

('

 is

'),
 Rule

1

5

)

 =>

 `

 is

`

#

 KB

 =

 { is
,

 is

,

 is
,

 is

,

 is

,
 is

}

#

 valid

 the

 question

 with

 current

 infer
=>

 Validate

(Q

=`

 is
`,

 KB

('

 is

'))

 =

.

------- ###

 Example

3

:
 Given

 list

 of

 facts

 and

 rules

:

#

 (

Rule

1

):

 is.

#

 (

Rule
2

):

 is

.

#

 (

Rule

3

):

 is

.

#

 (

Rule

4

):

 the

.

#

 (

Rule

5

):

 the
.

#

 (

Rule
6

):

 is

.

#

 (

Rule

7

):

 the

.

#

 (

Rule

8

):

 the

.

#

 (

Rule
9

):

 the
.

#

 (

Rule

1

0

):

 the

.

#

 (

Rule

1

1

):

 the

.

#

 (

Rule

1

2

):

 is

 the

.

#

 (

Rule

1

3

):

 the

 is

 the

 is

.

#

 (

Rule

1

4

):

 the
 the

 the

.

#

 (

Rule

1

5

):

 the

 and

 the the

 the

 the

.

#

 (

Rule

1

6

):

 is

 and

 the

.

#

 (

Rule

1

7

):

 is

 and

 the the

.

#

 (

Rule

1

8

):

 the

 is

 the

 is

.

#

 (

Rule

1

9

):

 the
 the

.

#

 (

Rule

2

0

):

 the

.

#

 (

Question
):

 Based

 on

 the

 above

 information

,

 is

 the

 following

 statement

 true

,

 false

,

 or

 unknown

?

 the

.

#

 (

Answer

): the

 and

 the

 question
 facts

:

,

 the

#

 KB

 =

 {}

=>

 Rule

4

 =

 `

 the

`

=>

 Rule

1

0

 =

 `

 the

`

=>
 Rule
1

1

 =

 `

 the

`
#

 KB

 =

 {

 the

,

 the

,

 the

}

=>

 F

(K

('

 the

'),

 Rule

1

9
)

 =>

 `

 the

`

#

 KB

 =

 {

 the

,

 the

,

 the

,

 the

}

=>

 F

(K

('

 the

'),

 Rule

1

9

)
 =>

 `

 the

`

#

 KB

 =

 {

 the

,

 the

,

 the

,

 the

,

 the

}

=>

 F

(K

('

 the

',

 '

 the

'),

 Rule

1

4

)
 =>

 `

 the

`

#

 KB

 =

 {

 the

,

 the

,

 the

,

 the

,

 the

,

 the

}

=>

 F

(K

('

 the

',

 '

 the

'),
 Rule1

5

) =>

 `

 the

`

#

 KB

 =

 {

 the

,

 the

,

 the

,

 the

,

 the

,

 the

,

 the

}

=>

 F

(K

('

 the

',

 '

 the

'),

 Rule1

7

)

 =>

 `

 the

`

 (

 KB

)

#

 KB

 =

 {

 the

,

 the

,

 the

,

 the

,

 the

,

 the

,

 the

}

#

 valid

 the

 question

 with

 current

 infer
=>

 Validate

(Q

=`

 the

`, KB

)

 =

.

-------------- ###

 Example
3

:
 Given

 list

 of

 facts

 and

 rules

:

#

 (

Rule

1

):

 is

.

#

 (

Rule 2

):

 is

.

#

 (

Rule

3
):

 is

.

#

 (

Rule

4
):

 is

.

#

 (

Rule

5

):

 is

.

#

 (

Rule

6

):

 is
.

#

 (

Rule

7

):

 is

.

#

 (

Rule
8

):

.

#

 (

Rule
9

):
.

#

 (

Rule

1

0):

 is

 is
.

#

 (

Rule

1

1

):

 is

.

#

 (

Rule

1

2

):

 is

 is

.

#

 (

Rule

1

3

):

 is

.

#

 (

Rule

1

4

):

 is

 and

.

#

 (

Rule

1

5

):

 is

.

#

 (

Rule

1

6

):

 is is

.

#

 (

Question
):

 Based

 on

 the

 above

 information

,
 is

 the

 following

 statement

 true

,

 false

,

 or

 unknown

?

 is

.

#

 (

Answer

):

 the

 and

 the

 question
 facts

:

,

 is
#

 KB

 =

 {}

=>

 Rule

7

 =

 `

 is

`
#

 KB

 =

 {

 is

}

=>

 F

(K

('

 is

'),

 Rule

1

3

)

 =>

 `

 is

`

#

 KB

 =

 {

 is
,

 is

}

=>

 F

(K

('

 is

'),

 Rule

1

5

)
 =>

 `

 is

`

#

 KB

 =

 {

 is , is

,

 is

}

=>

 F

(K

('

 is

'),

 Rule1

1

)
 =>

 `

 is

`

#

 KB

 =

 {

 is

, is ,

 is

,
 is

}

=>

 F

(K

('

 is

'), Rule

9

) =>

 `

 is

`

#

 KB

 =

 {

 is

, is ,

 is

,

 is

,

 is

}

 #

 valid

 the

 question

 with

 current

 infer
=>

 Validate

(Q

=`

 is

`,
 KB

('

 is

'))

 =

 False

.

-------------- ###

 Example

3

:
 Given

 list

 of

 facts

 and

 rules

:

#

 (

Rule

1

):

 the

.

#

 (

Rule 2

):

 the
.

#

 (

Rule
3

):

 the

.

#

 (

Rule

4

):

 is

.

#

 (

Rule

5

):

 is

.

#

 (

Rule

6

):

 the

.

#

 (

Rule

7

):

 the

.

#

 (

Rule

8

):

 the

 the

 is.

#

 (

Rule
9

):

 the

 and

 the

 the

 the

.

#

 (

Rule

1

0

):

 the

 is.

#

 (

Rule

1

1

):

 is

 and

 the the

 is

.

#

 (

Rule

1

2

):

 is

 the

.

#

 (

Rule

1

3

):

 is

 the

.

#

 (

Rule

1

4

):

 the
 the

.

#

 (

Rule

1

5

):

 the the

 the

.

#

 (

Rule

1

6

):

 the

 and

 the
 the the

.

#

 (

Question

):

 Based on

 the

 above

 information

,

 is

 the

 following

 statement

 true

,

 false

,

 or

 unknown

?

 the

.

#

 (

Answer
):

 the

 and

 the

 question facts

:

,

 the

#

 KB

 =

 {}

=>

 Rule

1

 =

 `

 the

`

=>
 Rule

2

 =

 `

 the

`

=>

 Rule

3

 =

 `

 the

`

=>

 Rule

4

 =

 `

 is

`

=> Rule

5

 =

 `

 is

`
=>

 Rule

6

 =

 `

 the

`
=> Rule

7
 =

 `

 the

`

#

 KB

 =

 {

 the

,

 the

,

 the

,

 is

,

 is

,

 the

,

 the

}

=>

 F

(K

('

 the

'),

 Rule

1

4
)

 =>

 `

 the

`

#

 KB

 =

 {

 the

,

 the

,

 the

,

 is

,

 is

,

 the

,

 the

,

 the

}

=>

 F

(K

('

 the

',

 '

 the

'), Rule

9

)
 =>

 `

 the

`

#

 KB

 =

 {

 the

,

 the

,

 the

,

 is

,

 is

,

 the

,

 the

,

 the

,

 the

}

=>

 F

(K

('
 the

'), Rule

1

4

) =>

 `

 the

`

#

 KB

 =

 {

 the

,

 the

,

 the

,

 is

,

 is

,

 the

,

 the

,

 the

,

 the

,

 the

}

=>

 F

(K

('

 the

'),

 Rule

8

) =>

 `

 is

`

#

 KB

 =

 {

 the

,

 the

,

 the

,

 is

,

 is

,

 the

,

 the

,

 the

,

 the

,

 the

,

 is

}

=>

 F

(K

(' is

'),
 Rule

1

3

)

 =>

 `

 the

`

#

 KB

 =

 {

 the

,

 the

,

 the

,

 is

,

 is

,

 the

,

 the

,

 the

,

 the

,

 the

,

 is

,

 the

}

=>

 F

(K

('

 the

'),
 Rule1

3

) =>

 `

 the

`

 (

 KB

)

#

 KB

 =

 {

 the

,

 the

,

 the

,

 is

,

 is

,

 the

,

 the

,

 the

,

 the

,

 the

,

 is

,

 the

}

=>

 F

(K

('

 the

'),

 Rule
1

5

)

 =>

 `

 the

`

#

 KB

 =

 {

 the

,

 the

,

 the

,

 is

,

 is

,

 the

,

 the

,

 the

,

 the

,

 the

,

 is

,

 the

,

 the

}

=>

 F

(K

PCA Visualization of word Vectors

Figure 7: Visualization of last-layer word hidden states
from Qwen3-8B, with dimensionality reduced via PCA,
in the Symbolic-Aided CoT setting on the ProofWriter
dataset. The purple, brown, and green data points rep-
resent the embeddings of logical symbols (e.g., “=>”,
“KB”), instruction tokens (e.g., “Let,” “us,” “define”),
and sample content tokens (e.g., “cat,” ”mouse”), re-
spectively.

Case studies. Based on case studies of incor-
rect predictions, we identified several improvement
scenarios exhibited by Symbolic-Aided CoT com-
pared to the standard CoT prompting technique
(Table 3 in Appendix A): (1) Hallucinated Infer-
ence Rules: LLMs often generate inference rules
that are either fabricated, logically invalid, or mis-
aligned with the intended knowledge base (first
row in Table 3). This phenomenon is caused by the
counterfactual or pre-trained knowledge embedded
within LLMs can conflict with in-context rules or
premises provided at inference time. This under-
mines the assumption that the model will reason
strictly within the given context or constraints; (2)
Unstoppable Inference Flow: The reasoning pro-
cess lacks a clear halting condition (third row in
Table 3). The model continues generating premises
without a mechanism to determine when inference
should stop, leading to uncontrolled or incoherent
inference chains. This highlights the need to explic-
itly track and manage the state of the knowledge

base (KB) during reasoning; (3) Failure on Cyclic
Inference Graphs: When the inference space forms
a cyclic graph, LLMs often fail—either entering
infinite reasoning loops or struggling to resolve the
cycle (second and third rows in Table 3). These
models lack the structural awareness to detect and
handle loops in reasoning chains; (4) Rule Match-
ing Errors: LLMs frequently fail to apply infer-
ence rules correctly due to poor condition matching
(fourth row in Table 3). The model may skip nec-
essary preconditions or generate incorrect interme-
diate steps, breaking the logical flow of multi-step
reasoning.

5 Discussion

Logical reasoning tasks have attracted numerous
research works recently (Pan et al., 2023; Ye et al.,
2023; Olausson et al., 2023; Sun et al., 2024; Zhang
et al., 2025), especially following the massive suc-
cess of LLMs. Unlike previous methods, by propos-
ing Symbolic-Aided CoT, we primarily aim to en-
hance the logical reasoning ability of LLMs rather
than simply build a system to improve performance
on logical reasoning tasks. For example, frame-
works such as Logic-LM (Pan et al., 2023) and
SatLM (Ye et al., 2023) use LLMs only to translate
logical problems into inputs for explicit symbolic
reasoners. Frameworks like CR (Zhang et al., 2025)
and DetermLR (Sun et al., 2024) leverage LLMs to
perform small constituent logical reasoning steps,
rather than directly evaluating the LLM’s logical
reasoning ability on the entire problem.

The experimental results show that our
Symbolic-Aided CoT prompting technique is reli-
able and effectively improves the logical reasoning
ability of LLMs, even for small model sizes. Our
prompting method is simple, yet effective and flex-
ible, allowing customization for any logical reason-
ing task. It can also yield proof trees that facilitate
explanation and enhance transferability.

6 Conclusion

In this work, we introduced Symbolic-Aided CoT,
a novel prompting technique for non-interactive
logical reasoning, which achieves superior perfor-
mance on well-known benchmark datasets—most
notably ProofWriter, ProntoQA, and LogicalDe-
duction. Our method is deliberately simple to pre-
serve generalizability and shows strong potential
for extension to other reasoning tasks. For future
work, Symbolic-Aided CoT, grounded in structural

341

characteristics, could be combined with mecha-
nisms for refining the latent semantic vector space,
thereby further improving the faithfulness and reli-
ability of LLMs’ reasoning capabilities.

Acknowledgments

This work was supported by JSPS KAKENHI
Grant Number 22H00524 and the Nakajima Foun-
dation. We used ABCI 3.0 provided by AIST and
AIST Solutions with support from “ABCI 3.0 De-
velopment Acceleration Use”.

Limitations

We discuss the following limitations and future
works: We have evaluated the proposed method
on four widely used logical reasoning benchmarks.
However, they are mostly synthetic; incorporat-
ing real-world datasets or diverse reasoning tasks
(e.g., commonsense reasoning) would strengthen
claims of generalizability. Relying solely on auto-
matic metrics like accuracy overlooks qualitative
aspects; integrating human evaluations to assess
reasoning faithfulness and interpretability would
offer a more holistic validation. Future research
could also explore the method’s robustness to ad-
versarial perturbations, sensitivity to prompts, and
scalability to longer reasoning chains.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 12 others. 2020. Language models are
few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex
Castro-Ros, Marie Pellat, Kevin Robinson, and 16
others. 2024. Scaling instruction-finetuned language
models. Journal of Machine Learning Research,
25(70):1–53.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, and 82
others. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Jiazhan Feng, Ruochen Xu, Junheng Hao, Hiteshi
Sharma, Yelong Shen, Dongyan Zhao, and Weizhu
Chen. 2024. Language models can be deductive
solvers. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 4026–4042,
Mexico City, Mexico. Association for Computational
Linguistics.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: Program-aided language
models. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
10764–10799. PMLR.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gre-
gory Valiant. 2022. What can transformers learn
in-context? a case study of simple function classes.
Advances in Neural Information Processing Systems,
35:30583–30598.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent-
ing Qi, Martin Riddell, Wenfei Zhou, James Coady,
David Peng, Yujie Qiao, Luke Benson, Lucy Sun,
Alexander Wardle-Solano, Hannah Szabó, Ekaterina
Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu,
Brian Wong, Malcolm Sailor, and 16 others. 2024.
FOLIO: Natural language reasoning with first-order
logic. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 22017–22031, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Theo X. Olausson, Alex Gu, Ben Lipkin, Cedegao E.
Zhang, Armando Solar-Lezama, Joshua B. Tenen-
baum, and Roger P. Levy. 2023. LINC: A neurosym-
bolic approach for logical reasoning by combining
language models with first-order logic provers. In
The 2023 Conference on Empirical Methods in Natu-
ral Language Processing.

Catherine Olsson, Nelson Elhage, Neel Nanda,
Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna
Chen, Tom Conerly, Dawn Drain, Deep Gan-
guli, Zac Hatfield-Dodds, Danny Hernandez, Scott
Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, and 7 others. 2022. In-context learn-
ing and induction heads. Transformer Circuits

342

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://jmlr.org/papers/v25/23-0870.html
http://jmlr.org/papers/v25/23-0870.html
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.18653/v1/2024.findings-naacl.254
https://doi.org/10.18653/v1/2024.findings-naacl.254
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.18653/v1/2024.emnlp-main.1229
https://doi.org/10.18653/v1/2024.emnlp-main.1229
https://openreview.net/forum?id=h00GHjWDEp
https://openreview.net/forum?id=h00GHjWDEp
https://openreview.net/forum?id=h00GHjWDEp

Thread. Https://transformer-circuits.pub/2022/in-
context-learning-and-induction-heads/index.html.

Francesco Ortu, Zhijing Jin, Diego Doimo, Mrinmaya
Sachan, Alberto Cazzaniga, and Bernhard Schölkopf.
2024. Competition of mechanisms: Tracing how
language models handle facts and counterfactuals.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 8420–8436, Bangkok, Thailand.
Association for Computational Linguistics.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Wang. 2023. Logic-LM: Empowering large
language models with symbolic solvers for faithful
logical reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
3806–3824, Singapore. Association for Computa-
tional Linguistics.

Chengwen Qi, Ren Ma, Bowen Li, He Du, Binyuan Hui,
Jinwang Wu, Yuanjun Laili, and Conghui He. 2025.
Large language models meet symbolic provers for
logical reasoning evaluation. In The Thirteenth Inter-
national Conference on Learning Representations.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International
Conference on Learning Representations.

Richard Shin and Benjamin Van Durme. 2022. Few-
shot semantic parsing with language models trained
on code. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5417–5425, Seattle, United States.
Association for Computational Linguistics.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R. Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, Agnieszka Kluska, Aitor
Lewkowycz, Akshat Agarwal, Alethea Power, Alex
Ray, Alex Warstadt, Alexander W. Kocurek, Ali
Safaya, Ali Tazarv, and 431 others. 2023. Beyond
the imitation game: Quantifying and extrapolating
the capabilities of language models. Transactions on
Machine Learning Research. Featured Certification.

Hongda Sun, Weikai Xu, Wei Liu, Jian Luan, Bin Wang,
Shuo Shang, Ji-Rong Wen, and Rui Yan. 2024. De-
termLR: Augmenting LLM-based logical reasoning
from indeterminacy to determinacy. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9828–9862, Bangkok, Thailand. Association
for Computational Linguistics.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621–3634, Online.
Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart Van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Fangzhi Xu, Zhiyong Wu, Qiushi Sun, Siyu Ren, Fei
Yuan, Shuai Yuan, Qika Lin, Yu Qiao, and Jun Liu.
2024a. Symbol-LLM: Towards foundational symbol-
centric interface for large language models. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 13091–13116, Bangkok, Thailand.
Association for Computational Linguistics.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-
Li Lee, and Wynne Hsu. 2024b. Faithful logical
reasoning via symbolic chain-of-thought. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 13326–13365, Bangkok, Thailand.
Association for Computational Linguistics.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, and 1 others.
2025. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2023.
SatLM: Satisfiability-aided language models using
declarative prompting. In Thirty-seventh Conference
on Neural Information Processing Systems.

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew C
Yao. 2025. Cumulative reasoning with large lan-
guage models. Transactions on Machine Learning
Research.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations.

A Improving examples

In this section, we present detailed improvement
examples from the ProofWriter dataset for our

343

https://doi.org/10.18653/v1/2024.acl-long.458
https://doi.org/10.18653/v1/2024.acl-long.458
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://openreview.net/forum?id=C25SgeXWjE
https://openreview.net/forum?id=C25SgeXWjE
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://aclanthology.org/2022.naacl-main.396
https://aclanthology.org/2022.naacl-main.396
https://aclanthology.org/2022.naacl-main.396
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.18653/v1/2024.acl-long.531
https://doi.org/10.18653/v1/2024.acl-long.531
https://doi.org/10.18653/v1/2024.acl-long.531
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.acl-long.707
https://doi.org/10.18653/v1/2024.acl-long.707
https://doi.org/10.18653/v1/2024.acl-long.720
https://doi.org/10.18653/v1/2024.acl-long.720
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=TqW5PL1Poi
https://openreview.net/forum?id=TqW5PL1Poi
https://openreview.net/forum?id=grW15p4eq2
https://openreview.net/forum?id=grW15p4eq2
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

Symbolic-Aided CoT method compared to the CoT
method, in the setting using the Qwen3-8B model
(Table 3).

344

Table 3: Improving examples from the ProofWriter dataset for our Symbolic-Aided CoT method compared to the
CoT method. The red text refers to incorrect logical reasoning or hallucinated content, and the green text refers to
the final premises related to the target question.

Id Context, Question, and Answer CoT’s output + Error Type Symbolic-Aided CoT’s output + Error Type

ProofWriter-
_AttNeg-
OWA-D5-
596_Q6

Given list of facts and rules:
(Rule1): Anne is not rough.
(Rule2): Bob is blue.
(Rule3): Erin is not furry.
(Rule4): Erin is red.
(Rule5): Gary is big.
(Rule6): Gary is not cold.
(Rule7): Gary is furry.
(Rule8): If something is blue then it is rough.
(Rule9): Red things are rough.
(Rule10): If Gary is rough then Gary is not blue.
(Rule11): Rough things are red.
(Rule12): Big things are quiet.
(Rule13): All cold things are big.
(Rule14): If something is red then it is big. [...]
(Question): Based on the above information, is the
following statement true, false, or unknown? Erin is not
quiet.
(Answer): False

Erin is red. Red things are rough. If
something is rough then it is not quiet. So
Erin is not quiet.

(1) Hallucinated Inference Rules

Start from the object and their condition mentioned
in the question to collect relevant facts: Erin, is not
quiet
KB = {}
=> Rule3 = ‘Erin is not furry‘
=> Rule4 = ‘Erin is red‘
KB = {Erin is not furry, Erin is red}
=> F(KB(’Erin is red’), Rule9) => ‘Erin is rough‘
KB = {Erin is not furry, Erin is red, Erin is rough}
=> F(KB(’Erin is red’), Rule11) => ‘Erin is red‘
(already in KB)
KB = {Erin is not furry, Erin is red, Erin is rough}
=> F(KB(’Erin is red’), Rule14) => ‘Erin is big‘
KB = {Erin is not furry, Erin is red, Erin is rough,
Erin is big}
=> F(KB(’Erin is big’), Rule12) => ‘Erin is quiet‘
KB = {Erin is not furry, Erin is red, Erin is rough,
Erin is big, Erin is quiet}
valid the question with current inferred premies
=> Validate(Question=‘Erin is not quiet‘, KB(’Erin
is quiet’))=False.

ProofWriter-
_RelNoneg-
OWA-D5-
356_Q4

Given list of facts and rules:
(Rule1): The cow eats the mouse.[...]
(Rule15): The squirrel likes the cow.
(Rule16): The squirrel likes the mouse.
(Rule17): If something likes the cow then it visits the
mouse.
(Rule18): If something likes the cow then the cow is
green.
(Rule19): If something eats the squirrel and the squirrel
likes the rabbit then it eats the rabbit.
(Rule20): If something is cold then it likes the cow.
(Rule21): If something visits the squirrel then the squir-
rel likes the rabbit.
(Rule22): If the cow likes the rabbit then the cow is
cold.[...]
(Question): Based on the above information, is the fol-
lowing statement true, false, or unknown? The squirrel
does not visit the mouse.
(Answer): False

The cow likes the rabbit. If the cow likes the
rabbit then the cow is cold. The cow is cold.
The cow likes the squirrel. If something is
cold then it likes the cow. The cow likes the
cow. The cow visits the mouse. If something
likes the cow then it visits the mouse. The
cow visits the mouse. The squirrel likes the
cow. If something visits the squirrel then the
squirrel likes the rabbit. The squirrel likes
the rabbit. The squirrel eats the rabbit. If
something likes the rabbit and it visits the
mouse then the mouse visits the squirrel [...]

(3) Failure on Cyclic Inference Graph
(4) Rule Matching Errors

Start from the object and their condition mentioned
in the question to collect relevant facts: The squirrel,
does not visit the mouse
KB = {}
=> Rule1 = ‘The cow eats the mouse‘
KB = {cow eats mouse, [...], squirrel is rough,
squirrel likes cow, squirrel likes mouse}
=> F(KB(’squirrel likes cow’), Rule17) => ‘squirrel
visits mouse‘
KB = {cow eats mouse, [...] squirrel is rough,
squirrel likes cow, squirrel likes mouse, squirrel
visits mouse}
valid the question with current inferred premies
=> Validate(Question=‘The squirrel does not visit
the mouse‘, KB(’squirrel visits mouse’)) = False.

ProofWriter-
_RelNeg-
OWA-D5-
688_Q22

Given list of facts and rules:[...]
(Rule6): The lion needs the mouse.
(Rule7): The mouse is round.
(Rule8): The mouse likes the lion.
(Rule9): The mouse needs the lion.[...]
(Rule15): If something likes the cat and it does not visit
the cat then it visits the lion.
(Rule16): If the lion is green and the lion visits the
mouse then the mouse is red.
(Rule17): All red things are nice.
(Rule18): If something likes the lion then it is red.
(Rule19): If the mouse visits the cat and the mouse
needs the squirrel then the mouse does not like the cat.
(Rule20): Nice things are big.
(Rule21): If something is big then it visits the squirrel.
(Rule22): If the mouse visits the squirrel then the mouse
does not visit the lion.
(Question): Based on the above information, is the
following statement true, false, or unknown? The lion
likes the mouse.
(Answer):": Uncertain

The mouse likes the lion. The mouse needs
the lion. The mouse visits the cat. The
mouse visits the squirrel. The mouse does
not visit the lion. The mouse is round. The
mouse is red. The mouse is nice. The mouse
is big. The mouse is nice. The mouse is big.
The mouse visits the squirrel. The mouse
does not visit the lion. The mouse is red. The
mouse is nice. The mouse is big. The mouse
is nice. The mouse is big. The mouse is nice.
The mouse is big. The mouse is nice. The
mouse is big. [...]

(2) Unstoppable Inference Flow
(3) Failure on Cyclic Inference Graphs

Start from the object and their condition mentioned
in the question to collect relevant facts: The lion,
likes the mouse
KB = {} [...]
KB = {The lion needs the mouse, The mouse likes
the lion, The mouse is red, The mouse is nice}
=> F(KB(’The mouse is nice’), Rule20) => ‘The
mouse is big‘
KB = {The lion needs the mouse, The mouse likes
the lion, The mouse is red, The mouse is nice, The
mouse is big}
=> F(KB(’The mouse is big’), Rule21) => ‘The
mouse visits the squirrel‘
KB = {The lion needs the mouse, The mouse likes
the lion, The mouse is red, The mouse is nice, The
mouse is big, The mouse visits the squirrel}
=> F(KB(’The mouse visits the squirrel’), Rule22)
=> ‘The mouse does not visit the lion‘[...]
valid the question with current inferred premies
=> Validate(Question=‘The lion likes the mouse‘,
KB(’The mouse likes the lion’)) =Uncertain.

ProofWriter-
_AttNoneg-
OWA-D5-
245_Q19

Given list of facts and rules:[...]
(Rule4): Erin is nice.[...]
(Rule11): Furry people are smart.
(Rule12): If someone is smart and nice then they are
round.
(Rule13): Cold people are red.
(Rule14): If someone is quiet then they are nice.
(Rule15): All red people are furry.
(Rule16): All smart, furry people are nice.
(Question): Based on the above information, is the
following statement true, false, or unknown? Erin is not
quiet.
(Answer) : Uncertain

Erin is nice. If someone is nice then they are
quiet. So Erin is quiet. Therefore, Erin is
quiet, so the statement ’Erin is not quiet’ is
false.

(4) Rule Matching Errors

Start from the object and their condition mentioned
in the question to collect relevant facts: Erin, is not
quiet
KB = {}
=> Rule4 = ‘Erin is nice‘
KB = {Erin is nice}
=> F(KB(’Erin is nice’), Rule14) => ‘Erin is quiet‘
KB = {Erin is nice, Erin is quiet}
valid the question with current infered premies
=> Validate(Question=‘Erin is not quiet‘, KB(’Erin
is quiet’)) = False.

(4) Rule Matching Errors

345

	Introduction
	Background and Related Work
	Background
	Related Works

	Methodology
	Symbolic-Aided CoT

	Experiment and Analysis
	Experimental Setup
	Main Results
	Result Analysis

	Discussion
	Conclusion
	Improving examples

