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Abstract

Visual Question Answering (VQA) has seen
significant progress on general images, yet
food imagery presents unique challenges re-
quiring domain-specific understanding. This
paper presents KWordinaryVQA1, an end-to-
end automated pipeline to construct large-scale
food VQA datasets. Starting from raw images,
we employ advanced Large Language Models
(LLMs) to generate detailed descriptions and
synthesize diverse question-answer pairs, fol-
lowed by targeted manual validation to ensure
high-quality evaluation data. We then bench-
mark multiple approaches–including LLMs un-
der zero-shot and few-shot settings, a tradi-
tional retrieval baseline, and representative fine-
tuned vision-language models–evaluating them
on accuracy, human judgment, and inference ef-
ficiency. Our workflow mirrors a standard data
science process of data collection, exploration,
evaluation, and model building, providing a sys-
tematic framework for domain-specific VQA.

1 Introduction

Visual Question Answering (VQA) aims to de-
velop systems that can answer natural language
questions based on the visual content of an im-
age. This inherently multimodal task requires
a sophisticated integration of computer vision,
natural language understanding, and often, com-
monsense reasoning. While significant strides
have been made with general-purpose VQA bench-
marks like VQA v2.0 (Goyal et al., 2017) and OK-
VQA (Marino et al., 2019), largely fueled by ad-
vances in transformer-based multimodal architec-
tures, these models often struggle when applied to
specialized domains. The food domain, in particu-
lar, presents unique challenges and opportunities,
yet remains relatively underexplored despite its pro-
found practical relevance.

1The final dataset is available on Kaggle.

Addressing VQA in the food domain extends be-
yond academic inquiry, unlocking numerous real-
world applications. Such systems could revolution-
ize dietary tracking by identifying ingredients and
portion sizes, enhance cooking education with in-
teractive guidance, and offer crucial assistive tech-
nologies for individuals with visual impairments
or dietary restrictions. For example, the ability
to accurately detect allergens or forbidden food
items is crucial for users with health concerns, such
as food allergies and diabetes, or those following
religious dietary laws, underscoring the need for
ingredient-level understanding. Furthermore, vi-
sual cues like color and texture are vital indica-
tors of food condition–whether an item is raw, per-
fectly cooked, or fresh–making an effective food
VQA system invaluable for culinary evaluation,
food safety, and quality control in both domestic
and industrial settings such as restaurants and food
processing plants. Spatial reasoning also plays
a crucial role; understanding the arrangement of
food components on a plate can inform analyses
of food presentation, a key factor in professional
culinary arts and brand consistency across F&B
chains. AI systems could thereby assess presen-
tation uniformity, portion control, and adherence
to plating standards, directly impacting customer
experience and brand perception.

Despite these compelling applications and the
increasing capabilities of general VQA models,
our preliminary analysis and a review of existing
literature indicate that current state-of-the-art ap-
proaches, including large language models (LLMs)
with visual grounding, classification-based meth-
ods, and statistical models, often falter on domain-
specific food-related queries (as detailed in Sec-
tion 2). This performance gap stems from sev-
eral factors: the inherent visual complexity of food
items (e.g., fine-grained differences between in-
gredients, varied cooking states), the need for spe-
cialized, implicit domain knowledge (e.g., culinary
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techniques, cultural nuances), and critically, the
scarcity of large-scale, high-quality, open-ended
VQA datasets tailored specifically for the food do-
main.

To address the lack of domain-adapted bench-
marks in visual question answering, we intro-
duce KWordinaryVQA, an end-to-end automated
pipeline for constructing VQA datasets from food
imagery. Beginning with raw images from the pub-
lic culinary platform Allrecipes (Allrecipes contrib-
utors, 2025), the pipeline first employs Gemini 2.0
Flash (Google DeepMind, 2025) to perform image
captioning and then extract key phrases from these
captions. Subsequently, question-answer pairs are
generated from the captions and key phrases us-
ing DeepSeek-V3 (Liu et al., 2024). This auto-
mated workflow enables the construction of scal-
able datasets with minimal human effort, promot-
ing deeper reasoning through open-ended formats
rather than restrictive multiple-choice or classifica-
tion tasks.

Our contributions are fourfold. First, we design
and implement a fully automated pipeline for gen-
erating domain-specific VQA data from food im-
agery. Second, we construct the KWordinaryVQA
dataset, consisting of 43,455 QA pairs across 8,693
images, including manually validated test and val-
idation splits. Third, we benchmark a diverse set
of VQA approaches–ranging from zero-shot LLMs
and TF-IDF retrieval to fine-tuned vision-language
transformers. Finally, we conduct in-depth dataset
analysis, covering question types, linguistic fea-
tures, and performance breakdowns, offering in-
sight into domain-specific VQA challenges.

To facilitate further research, we publicly release
the KWordinaryVQA dataset, generation pipeline,
and evaluation code, aiming to advance domain-
adapted VQA in food and other specialized do-
mains.

2 Related Works

The growing interest in AI for the food domain
has led to the development of several datasets for
food-related tasks. These datasets, while valuable,
can be broadly categorized by their focus on either
cultural depth or task-specific evaluation, each with
inherent limitations.

Several benchmarks offer deep insights into
specific culinary traditions. For instance, Food-
ieQA (Li et al., 2024) provides a manually anno-
tated, multimodal benchmark for Chinese cuisine,

while IndiFoodVQA (Agarwal et al., 2024) uses a
knowledge-graph-enhanced pipeline to assess rea-
soning in the Indian food domain. Although these
datasets are rich in specialized knowledge, their
cultural specificity and, in the case of FoodieQA,
reliance on manual annotation, can limit their scal-
ability and general applicability.

In parallel, other large-scale efforts often concen-
trate on more constrained task formulations. World-
Cuisines (Winata et al., 2024), despite its impres-
sive scale and multilingual support, primarily tar-
gets dish and origin identification rather than com-
plex reasoning about visual attributes. Similarly,
Food-VQA-Benchmark (Cheng et al., 2024) evalu-
ates a suite of tasks but largely relies on closed-set
formats or structured outputs, which may not fully
capture the complexities of truly open-ended VQA
where models must generate free-form answers.

Collectively, while these datasets have advanced
the field, a clear gap persists. They are often con-
strained by the laborious nature of manual annota-
tion, which impacts scale and diversity, or their
task formulations favor identification and struc-
tured information over fostering a broad spectrum
of open-ended inquiries that demand nuanced vi-
sual reasoning. This highlights a pressing need for
a large-scale, open-ended VQA dataset for general
food imagery, developed through a scalable and
adaptable pipeline–a need that our work, KWordi-
naryVQA, directly aims to address.

3 Dataset Acquisition and Preprocessing

To construct the KWordinaryVQA dataset, we ini-
tially crawled 49,332 structured data entries from
the public recipe source Allrecipes (Allrecipes
contributors, 2025), covering a broad diversity of
cuisines, food types, and presentations, encompass-
ing both professionally staged studio shots and user-
submitted home-cooking photographs. Each entry
included a food image accompanied by metadata
such as food names, descriptions, and ingredients.
Given the scale of this raw dataset and computa-
tional constraints, we designed a multi-step prepro-
cessing pipeline to curate a high-quality, represen-
tative, and manageable subset suitable for robust
model training and evaluation.

3.1 Initial Data Filtering

The initial preprocessing involved two main stages.
First, to normalize food names, a fuzzy string
matching technique using the RapidFuzz (Bach-
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Figure 1: The dataset creation pipeline consists of three stages: (I) generating image descriptions, (II) extracting
relevant keywords, and (III) creating question-answer pairs.

mann, 2024) library was applied with a token set ra-
tio scorer and an 80% similarity threshold. Within
each group of near-duplicate names, the shortest
variant was selected as the canonical form to im-
prove naming consistency. This step resulted in
27,270 entries. Subsequently, we removed all sam-
ples with incomplete metadata to ensure data in-
tegrity for downstream tasks. Specifically, 498 en-
tries lacked calorie data and 9 were missing image
dimensions. By retaining only complete entries,
we obtained a final dataset of 21,370 samples.

3.2 Outlier Analysis and Retention
Outliers were analyzed using the interquartile range
(IQR) method, identifying caloric values outside
an 800-calorie range as potential outliers. In the
context of KWordinaryVQA, high-calorie dishes
(e.g., energy-rich foods) were deemed valuable for
calorie-related questions. Thus, we retained these
outliers to preserve informative samples, ensuring
the dataset remained representative of diverse nu-
tritional profiles.

3.3 Undersampling for Class Balance
The dataset exhibited significant class imbalances.
To address this, we implemented a two-tiered under-
sampling strategy. First, to mitigate the dominance
of common dishes (e.g., chicken, cake), we capped
their sample count at 100-150 per dish. Conversely,
extremely rare dishes (1-4 samples) were removed,
as their low representation was insufficient for ef-
fective model learning. This process reduced the
dataset to 16,817 entries.

Second, to address the severe imbalance between
vegan and non-vegan dishes, we capped the number
of samples for non-vegan dishes with more than 20
instances at 20, while all vegan and rare non-vegan

dishes were kept unchanged. This strategy yielded
a more reasonable class ratio (approximately 1:4)
while preserving dataset diversity, resulting in a
raw set of 9,191 unique food images.

3.4 Scope-based Filtering

Finally, a manual review was conducted to en-
sure linguistic and cultural consistency. To cre-
ate a robust benchmark, we narrowed the dataset’s
scope to focus on food items commonly understood
within general English culinary discourse. Entries
for dishes requiring specific, non-English cultural
context for identification (e.g., “Cao Lau,” a Viet-
namese specialty) were excluded. This deliberate
choice, while limiting cultural breadth, was crucial
for enhancing the dataset’s internal consistency and
suitability for our defined VQA task. This step re-
sulted in the final pool of 8,693 images used for
generation.

4 Dataset Creation

Following the preprocessing pipeline, a final col-
lection of 8,693 unique food images served as the
visual foundation for the KWordinaryVQA dataset.
This curated set captures a wide variety of cuisines,
food types, and presentation styles. The subse-
quent dataset creation process involved three main
automated stages: description generation, keyword
extraction, and question-answer synthesis.

4.1 Description Generation

For each image, we first generated a detailed textual
description using Gemini 2.0 Flash (Google Deep-
Mind, 2025). Given a food image, the model was
prompted (see Appendix A.1) to produce a concise,
standalone paragraph of up to 200 words, describ-
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Figure 2: Distribution of question lengths.

ing its salient contents, including ingredients, dish
type, and serving context. For example, for an im-
age of ramen, the model might output: “A bowl of
noodle soup with sliced pork, half an egg, green
onions, and seaweed on top, on a wooden table.” A
detailed description is foundational, as it provides
the rich, factual grounding required for generat-
ing diverse and meaningful questions. While the
process was largely automated, minor manual cor-
rections were occasionally applied to address clear
factual inaccuracies (e.g., misidentifying an ingre-
dient).

4.2 Keyword Extraction
To guide the question synthesis process and es-
tablish ground-truth answers, we then extracted
key terms from each image description. This step,
again utilizing Gemini 2.0 Flash, was designed
to produce a set of target answers for the subse-
quent QA generation. A specific prompt (see Ap-
pendix A.2) instructed the model to identify six
diverse keywords–including at least one verb, ad-
jective, noun, color, and preposition–to ensure a
variety of question types. For instance, from the
ramen description above, the extracted keywords,
which would later serve as target answers, might
be: slice, fresh, pork, green, on the table, soup.

4.3 Question-Answer Synthesis
Using the generated descriptions and extracted key-
words, we synthesized QA pairs with DeepSeek-
V3 (Liu et al., 2024). For each image, the model
received its description and keywords, tasked
with generating one question per keyword. The
prompt (Appendix A.3) enforced several critical
constraints: questions had to be grounded in the
description, the answer for each question had to
be the corresponding keyword, and “Where” ques-
tions were specifically generated for prepositional
keywords. This automated workflow allowed for

Figure 3: Distribution of answer lengths.

the rapid, large-scale synthesis of question-answer
pairs, averaging approximately five pairs per im-
age.

4.4 Data Splitting and Validation

The dataset was partitioned at the image level to
prevent content leakage between splits: 90% of
the images and their corresponding QA pairs were
allocated to the training set (39,051 pairs), and
the remaining 10% were reserved for the test set
(4,342 pairs). A subset of the training data was
subsequently held out for validation.

To ensure the high quality of our evaluation
benchmark, the initial test set underwent a rigor-
ous manual validation process for factual accuracy,
visual relevance, and clarity. This involved remov-
ing or rephrasing samples that: (1) referenced de-
tails not visually apparent (i.e., hallucinations); (2)
were vague or inadequately specified; or (3) re-
quired subjective inference or external knowledge.
For example, speculative queries about non-visible
attributes (e.g., spiciness) were discarded. This
meticulous process resulted in a high-confidence
test set of 3,699 QA pairs (a 15.0% reduction). The
training and validation sets were not subjected to
this manual filtering. Illustrative examples from
the resulting dataset can be found in Appendix D.

5 Dataset Analysis

To characterize the newly constructed KWordi-
naryVQA dataset and assess the output of our gen-
eration pipeline, we conducted an exploratory data
analysis. This analysis provided insights into prop-
erties such as question diversity and potential bi-
ases, informing our understanding of the dataset’s
characteristics and suitability for evaluating VQA
models.
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Figure 4: Question types distribution.

5.1 Length Distributions

We first analyzed the length of questions and an-
swers in terms of word count. Questions in KWor-
dinaryVQA tend to be concise, with a mean length
of 7.79 and a median of 8 words. As shown in
Figure 2, the distribution peaks around 8-9 words,
with a long tail extending to about 15 words, cor-
responding to more complex inquiries. Answers
are typically even shorter; over 80% are single or
two-word responses. The average answer length
is 1.41 words, with a heavy concentration on one-
word answers (Figure 3). This finding has direct
implications for evaluation design, suggesting that
metrics should accommodate brief answers and
that exact-match criteria may be overly stringent
for some phrasal responses.

5.2 Question Types

We categorized the questions by their starting
words to identify common patterns. As illustrated
in Figure 4, the dataset is overwhelmingly domi-
nated by “What” questions, which typically inquire
about ingredients, objects, or dish names. “Where”
questions focusing on spatial relations are the next
most frequent category, followed by “How” ques-
tions, which encompass both counting and descrip-
tive inquiries.

Notably, other question types such as polar and
causal “Why” questions are extremely rare. This
distribution highlights a potential bias in our auto-
mated generation pipeline, which favors descriptive
inquiries grounded directly in visual evidence over
more abstract or inferential reasoning.

Figure 5: Analysis of verb quality in test set answers.
The chart illustrates the proportion of quality verbs
among all verb-based answers. Of the answers iden-
tified as verbs, 46.72% were deemed to be meaningful
(quality verbs).

5.3 Quality Estimation

While the training sets were not manually exam-
ined, we aimed to quantitatively estimate the inci-
dence of semantically poor labels (i.e., label noise).
To this end, we conducted a comparative analysis
of verb quality2 between the unfiltered test set and
its manually validated counterpart. We argue that
this analysis is representative of the entire dataset,
given that all splits were generated from the same
pipeline and exhibit consistent linguistic distribu-
tions, as detailed in Appendix E and F.

Our methodology leveraged the pre-existing
filtered test set as ground truth. First, we em-
ployed a BERT-uncased part-of-speech tagging
model (Blagojevic, 2024) to programmatically
identify all verb-based answers in the initial, un-
filtered test set, resulting in a total of 137 such
answers. We then applied the same process to the
manually validated test set, which yielded only 64
verb-based answers.

By this definition, the 64 verbs that survived the
manual validation process were considered "high-
quality" (e.g., "eat", "contain"), while the 73 verbs
that were filtered out were considered "low-quality"
or generic (e.g., “do”, “be”). As illustrated in Fig-
ure 5, this comparison yields a verb quality rate of
46.72%. However, given that verb-based answers
constitute a small fraction of the dataset, account-
ing for just 3.2% of all questions in the unfiltered
test set. Therefore, while this analysis highlights

2For this analysis, a “verb” is defined as a word tagged
as VERB, from which we excluded words ending in “-ed” to
filter out potential passive voice forms.
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a qualitative weakness in our pipeline, its overall
quantitative impact on the integrity of the automati-
cally generated training and validation sets is likely
limited.

5.4 Data Summary

Statistic Number
Size of dataset 42,750
Unique questions 29,822
Unique answers 4,413
Number of images 8,693
Average question length 7.79
Average answer length 1.42

Table 1: Dataset statistics.

Table 1 summarizes the key properties of the
KWordinaryVQA dataset. Crucially, our analysis
confirms that key linguistic characteristics are con-
sistently maintained across the training, validation,
and test splits (see Appendix E and F). This con-
sistency ensures that our benchmark provides a
fair and representative basis for evaluating model
performance.

6 Experimental Setup

6.1 Evaluation Metrics

To provide a holistic assessment of model perfor-
mance on the KWordinaryVQA test set, we em-
ployed a comprehensive suite of metrics target-
ing various dimensions of answer quality. We be-
gan by measuring Accuracy, defined as the pro-
portion of predictions that exactly matched the
ground-truth answers. This was followed by the
computation of standard token-level Precision, Re-
call, and F1-score (Goutte and Gaussier, 2005)
using normalized text. For lexical overlap, we
used BLEU-4 (Papineni et al., 2002) and ROUGE-
L (Lin, 2004). Lastly, to evaluate semantic rel-
evance beyond surface-level matching, we com-
puted GPTScore (Fu et al., 2024) using the GPT-4o
model via the OpenAI API.

6.2 Traditional Baselines

We first established performance using two tradi-
tional methods that treat VQA as a retrieval or
classification task over a fixed answer set.

6.2.1 Lexical Retrieval
As a non-parametric benchmark, we adopt a TF-
IDF retrieval method (Sparck Jones, 1972) to cap-

ture lexical patterns independent of visual input.
In this setup, each question is represented as a
TF-IDF weighted bag-of-words vector after stop-
word removal and stemming. For any given test
question, the answer of the most lexically similar
training question–determined by cosine similarity–
is adopted as the prediction. This approach, while
computationally efficient, entirely disregards visual
input.

6.2.2 Fine-Tuned Classifiers
To evaluate supervised, classification-based VQA,
we fine-tuned two models representing distinct ar-
chitectural paradigms: BEiT-3 (Wang et al., 2023),
a state-of-the-art unified model with an end-to-end
fused architecture, and LXMERT (Tan and Bansal,
2019), a canonical two-stream model that operates
on pre-extracted visual region features.

Both models were fine-tuned on the KWordi-
naryVQA training set with a classification objec-
tive, using a cross-entropy loss over a predefined
answer set. To prepare the data for this task, answer
labels in the training and validation sets underwent
a consistent normalization process, including low-
ercasing and punctuation removal. Reflecting its
two-stream design, LXMERT also required a sepa-
rate feature extraction step, for which we employed
a pretrained Faster R-CNN model (Ren et al., 2015)
with a ResNet-50 backbone (He et al., 2016) and
Feature Pyramid Network (Lin et al., 2017). Fur-
ther details on the fine-tuning hyperparameters are
provided in Appendix C.

6.3 Generative Model Baselines

Next, we evaluated the performance of several
state-of-the-art multimodal Large Language Mod-
els (LLMs) under different prompting conditions.

6.3.1 Zero-Shot Evaluation
In the primary evaluation setting, four mod-
els were tested under strict zero-shot setting:
Llama 3.2-Vision 11B Instruct (Meta AI, 2024),
MiniCPM-o 2.6 (Yao et al., 2024), Qwen2.5-VL
7B Instruct (Bai et al., 2025), and 3Gemini 2.0
Flash (Google DeepMind, 2025). Each model re-
ceived only the test image (resized to 480 × 480
pixels) and a question, without any in-context ex-
amples.

Initial tests with both ‘Raw’ (unconstrained) and
‘Instructed’ (concise format) prompting yielded low

3Questions were synthesized by DeepSeek-V3, mitigating
potential self-enhancement bias in Gemini’s evaluation.
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Figure 6: The two-phase post-processing pipeline applied to our Zero-Shot VLM baselines. (I) A LLM initially
generates a raw, often verbose, answer (e.g., ‘The top of the enchiladas is golden brown.’) to the visual question. (II)
This raw output is then post-processed by Gemini 2.0 Flash to extract a concise final answer (e.g., ‘golden brown’),
aligning it with the desired concise format.

Model Accuracy Precision Recall F1-score BLEU ROUGE-L GPTScore
TF-IDF 0.2163 0.2756 0.2762 0.2728 0.2209 0.2981 0.4285
BEiT-3 (fine-tuned) 0.4804 0.5543 0.5436 0.5455 0.4806 0.5780 0.6864
LXMERT (fine-tuned) 0.3574 0.6203 0.3574 0.3017 0.3549 0.4457 0.5686

Table 2: Evaluation of classification-based VQA models. Fine-tuned BEiT-3 achieved the best overall performance
among non-generative models, while LXMERT showed high precision but lower recall. The TF-IDF baseline,
though simple, performed reasonably well in repetitive query scenarios.

scores due to the models’ tendency to generate
verbose answers. Consequently, we implemented
a crucial post-processing step, where an LLM was
used to extract a concise, relevant answer from
the raw output (see Appendix B). This refinement
was applied to all zero-shot results to ensure fair
comparison.

6.3.2 Few-Shot Evaluation

To further assess in-context learning capabilities,
we conducted few-shot evaluations on two of
the models: Llama 3.2-Vision 11B Instruct and
MiniCPM-o 2.6. The evaluation was performed un-
der two distinct conditions, utilizing both 5 and
10 demonstration exemplars. These exemplars,
carefully curated from the training set, consisted
of image-question-answer triplets. This contex-
tual prefix was prepended to each test instance
to prime the models towards the appropriate re-
sponse format. Unlike the zero-shot setting, no
post-processing was applied to the few-shot out-
puts.

7 Results and Analysis

The empirical results of our benchmarking experi-
ments are presented below. These evaluations use a
range of current models to probe the difficulty and
characteristics of the KWordinaryVQA dataset.

7.1 Traditional and Fine-Tuned Baselines

The performance of the fine-tuned models and the
lexical retrieval baseline is presented in Table 2.
A substantial performance gap was observed be-
tween the fine-tuned models and the TF-IDF re-
trieval baseline. BEiT-3, the strongest performer
in this category, achieved a modest accuracy of
0.4804. This result indicates that the dataset is not
easily solved even by powerful, domain-adapted
vision-language models, suggesting that success-
ful task completion requires a level of reasoning
beyond simple pattern recognition.

7.2 Generative Model Baselines in Zero-Shot
Settings

The performance of large generative models in a
zero-shot setting further highlights the challenge
of KWordinaryVQA (Table 3). Without interven-
tion, all evaluated LLMs performed poorly, pri-
marily due to a systemic failure to produce an-
swers in the required concise format. This outcome
demonstrates that the benchmark effectively tests
a model’s ability to adhere to precise output con-
straints in addition to its content understanding.
While a post-processing pipeline substantially im-
proved the scores–with Gemini 2.0 Flash achieving
the highest GPTScore–the necessity of this external
step underscores a fundamental difficulty that the
dataset exposes in current generative models.
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Model Version Accuracy Precision Recall F1 BLEU ROUGE-L GPTScore
LLaMA 3.2 Vision Raw 0.0224 0.1045 0.6439 0.159 0.0419 0.1591 0.3476

Instructed 0.2160 0.3489 0.5723 0.3923 0.2437 0.4193 0.6245
Post-Processed 0.2958 0.4355 0.5346 0.4620 0.3151 0.5066 0.6782

MiniCPM-o 2.6 Raw negligible 0.0699 0.6665 0.1160 0.0172 0.1148 0.3787
Instructed 0.2690 0.4143 0.5533 0.4502 0.2978 0.4908 0.6599
Post-Processed 0.3160 0.4568 0.5287 0.4724 0.3275 0.5228 0.6936

Qwen2.5-VL Raw negligible 0.0539 0.6494 0.0953 0.0119 0.0910 0.3503
Instructed 0.0657 0.2443 0.5890 0.3163 0.1062 0.3442 0.6599
Post-Processed 0.2609 0.4111 0.5083 0.4356 0.2756 0.4832 0.6668

Gemini 2.0 Flash Raw 0.0370 0.1476 0.6633 0.2150 0.0100 0.2490 0.5607
Instructed 0.1703 0.3153 0.3690 0.3239 0.1815 0.3710 0.6113
Post-Processed 0.3533 0.4974 0.5694 0.5130 0.3627 0.5597 0.7239

Table 3: Zero-shot performance of generative vision-language models on the KWordinaryVQA benchmark under
three evaluation settings: Raw denotes direct model output from image-question input without prompt engineering;
Instructed augments input with manually designed prompts to guide answer generation; and Post-Processed
applies a secondary model to refine raw outputs for improved alignment with reference answers. Bold values
indicate the best scores within each model.

Model Version Accuracy Precision Recall F1 BLEU ROUGE-L GPTScore
LLaMA 3.2 Vision 5 samples 0.3060 0.4196 0.4866 0.4360 0.3198 0.4755 0.6108

10 samples 0.3466 0.4559 0.5226 0.4694 0.3568 0.5096 0.6541
MiniCPM-o 2.6 5 samples 0.2374 0.3971 0.5472 0.4363 0.2613 0.4810 0.6528

10 samples 0.3225 0.4546 0.5394 0.4761 0.3400 0.5178 0.6702

Table 4: Performance of generative models with few-shot setting. Both LLaMA 3.2 Vision and MiniCPM-o 2.6
struggled to match the concise answer format of the dataset, yielding moderate scores across all metrics. This
highlights the importance of output refinement for domain-specific VQA.

7.3 Few-Shot vs. Post-Processed Zero-Shot

Our final set of experiments confirmed the dataset’s
robustness against common learning strategies. As
shown in Table 4, the effectiveness of providing
in-context examples was inconsistent. While a 10-
shot configuration surpassed the F1-score of the
post-processed zero-shot baseline, a 5-shot con-
figuration proved insufficient to achieve the same,
indicating that adapting to the dataset’s diversity ne-
cessitates a substantial number of exemplars. Cru-
cially, a persistent trade-off was observed across
both settings: the few-shot approach improved
exact-match accuracy but resulted in lower seman-
tic relevance (GPTScore) compared to the post-
processed counterpart. This finding demonstrates
that the core challenges of KWordinaryVQA, par-
ticularly the dual demand for fine-grained reason-
ing and strict output formatting, are not easily cir-
cumvented by simple prompting strategies.

7.4 Inference Cost

Our evaluation reveals critical trade-offs between
performance, cost, and computational require-

ments, as detailed in Table 7. Fine-tuned models,
particularly BEiT-3, offer the highest efficiency, de-
livering moderate accuracy with minimal inference
time and no financial cost.

In contrast, large generative models present a
more complex cost-benefit profile. Notably, a zero-
shot approach combined with our optional post-
processing step achieves superior performance to
10-shot prompting but at a fraction of the compu-
tational cost and time. This result suggests that
for tasks like KWordinaryVQA, refining the output
of a cost-effective zero-shot model can be a more
pragmatic and effective strategy than computation-
ally expensive few-shot prompting.

7.5 Overall Evaluation

Our collective results reveal that no single mod-
eling paradigm excels across all dimensions of
performance, efficiency, and cost on the KWor-
dinaryVQA benchmark. Instead, the findings high-
light a series of critical trade-offs that present a
nuanced decision for practical applications.

Fine-tuned models, exemplified by BEiT-3,
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achieve the highest exact-match accuracy and in-
ference efficiency, but require a significant upfront
investment in training. Conversely, large genera-
tive models offer flexibility and eliminate training
costs, with a post-processed zero-shot approach–
using Gemini 2.0 Flash–delivering the best seman-
tic relevance. However, this approach’s reliance
on an external refinement step and the general fail-
ure of expensive few-shot prompting underscore
the inherent challenges these models face with the
dataset’s specific constraints.

Ultimately, these complex trade-offs solidify
KWordinaryVQA’s value as a multifaceted bench-
mark. It effectively probes models on distinct
capabilities–from precise classification to seman-
tic understanding and adherence to formatting–
demonstrating that a truly robust system for food-
domain VQA must balance these competing de-
mands.

8 Conclusion

In this paper, we introduced KWordinaryVQA, a
large-scale, automatically generated dataset for vi-
sual question answering in the food domain. Our
primary contribution is a novel, challenging bench-
mark designed to probe the reasoning capabilities
of modern vision-language models. Our compre-
hensive evaluations demonstrate that while no sin-
gle modeling paradigm excels across all metrics, a
series of critical trade-offs exist between accuracy,
semantic relevance, and computational efficiency.

The empirical results underscore the dataset’s
difficulty. We found that even powerful, fine-tuned
models like BEiT-3 achieve only modest accuracy,
while large generative models struggle with the
dataset’s concise formatting requirements, necessi-
tating external post-processing steps. Furthermore,
our experiments revealed that for deployment, refin-
ing the output of a cost-effective zero-shot model
can be a more pragmatic and effective strategy than
computationally expensive few-shot prompting.

Our work has two main limitations that open
avenues for future research. First, the automated
generation pipeline introduces a degree of seman-
tic noise. Future work should focus on develop-
ing methods for automated noise filtering to fur-
ther enhance dataset integrity. Second, our post-
processing technique relies on a static answer-
length threshold, limiting its applicability in dy-
namic, real-world systems. We believe that de-
veloping adaptive output refinement strategies is a

crucial next step.
By publicly releasing the KWordinaryVQA

dataset, our generation pipeline, and evaluation
code, we aim to facilitate further research into de-
veloping more robust and accurate food-centric
AI systems and to provide a valuable resource for
benchmarking in this specialized domain.

Limitations

A foundational limitation of our study is the in-
tegrity of the dataset itself, which is constrained
by semantic noise from the automated generation
process. This noise manifests as factually incor-
rect ground-truth answers, where the generated text
fails to align with the visual evidence (detailed in
Section 5.3). The implications of this label noise
are twofold. First, it corrupts the learning signal
during training, potentially forcing the model to
form erroneous associations rather than robust, gen-
eralizable knowledge. Second, it complicates eval-
uation, as a model providing a visually faithful
answer may be marked incorrect, leading to an un-
derestimation of its actual reasoning abilities. Con-
sequently, our reported results should be viewed as
a conservative baseline, acknowledging that model
performance is likely suppressed by these data arti-
facts.

Beyond the data itself, a second limitation lies
in the practical applicability of our post-processing
technique. The method relies on a pre-determined
threshold for answer length–for instance, instruct-
ing a model to generate ’no more than 5 words’.
Setting an optimal threshold requires analyzing the
entire dataset in advance to understand its global
statistics. This assumption of having full, prior
knowledge of the corpus is feasible for static, of-
fline benchmarks but is unrealistic for real-world,
dynamic systems where data arrives sequentially.
This dependency thus restricts the direct deploy-
ment of this specific method and underscores the
need for more adaptive post-processing strategies
in future work.
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Appendices

A Prompts for Data Generation

A.1 Image Description Generation

The following food items are present in
this image: {food_name }.

Describe the color and relative
location of each food item in
details.

Instruction:
- Only print the final description , do

not print anything else like
headers or human -like response!

- The summary has maximum 200 words
- Do not break the line!

A.2 Keyword Extraction

Given a summary of an image for the VQA
task , extract the top 6 important
keywords , ensuring diversity in
word types , including at least one
verb , one adjective , one noun , one
color , and one preposition (if
present).

Summary: {summary}
Instruction:
- Only print the extracted keywords as

a comma -separated list.
- If there is a preposition , include

the full phrase containing it
(e.g., 'on the table ' instead of
just 'on ').

- Do not print anything else like
headers or human -like responses!

A.3 Question-Answer Generation

Based on these keywords: {keywords} And
the food image description:
{summary}

Please generate one simple question per
keyword where:

1. Each question is based on the food
image description.

2. The answer to each question must
exactly match its corresponding
keyword

3. The number of questions must be
equal to the number of keywords

4. For keywords that are prepositions
(e.g., on the table), ask a Where
question.

5. The order of the questions must
match the order of the keywords.

Instruction:
- Generate only the questions as a

comma -separated list.
- Do not include headers , explanations ,

or human -like responses.

B Prompt for Post-Processing

You are a helpful VQA assistant.
Your task is to extract a single , most

relevant answer to the question ,
based on the given prediction text.

The answer must:
- Directly address the question 's intent
- Contain no more than 5 words
- Be written entirely in lowercase

letters
- Not include any commas , lists , or

explanations
- Be concise and natural , like a

typical VQA answer (e.g., 'red
shirt ', 'top left ', 'enchiladas ',
'golden -brown ', etc.)

- If multiple candidates appear in the
prediction , select the one most
relevant to the question

- Respond with only the final answer
and nothing else

Question: {question}
Predict: {prediction}

C Training Configuration

Hyperparameter Value
Optimizer Adam
Learning rate 5× 10−5

Batch size 8
GPU NVIDIA Tesla P100

Table 5: Training configuration for BEiT-3 and
LXMERT.

For the BEiT-3 model, we fine-tuned only the
classification head and the text embedding layers
over 4 epochs, which took approximately 6 hours,
while keeping the remaining parameters frozen.
The LXMERT model was fine-tuned for 6 epochs,
requiring about 1 hour.

D Illustrative Examples
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Image Question & Answer
Question: What color are the corn kernels in the
stew?
Answer: yellow

Question: Where is the dollop of sour cream lo-
cated?
Answer: atop the center

Question: What is the state of the cheese layer on
top of the pie?
Answer: melted

Question: What type of food is primarily located on
the right side of the image?
Answer: pie

Question: What color is the crust of the pie?
Answer: tan

Question: What color is the baking tin the pie is
sitting in?
Answer: silver

Question: What color are the string beans?
Answer: green

Question: How are the string beans arranged in the
image?
Answer: tangled

Question: How are the string beans arranged in the
image?
Answer: tangled

Question: Do the string beans overlap any other food
in the image?
Answer: yes

Question: Where are the string beans located in the
image?
Answer: in the bottom center
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Image Question & Answer
Question: What color are the falafels?
Answer: golden-brown

Question: What color is the lemon?
Answer: yellow

Question: What type of food is shown in the image?
Answer: falafels

Question: What is the predominant color of the lasagna
noodles?
Answer: yellow

Question: What is the name of the dish described?
Answer: lasagna

Question: Where are the fresh green parsley leaves
placed?
Answer: on top

Question: What type of pasta is in the center of the dish?
Answer: linguine

Question: What color is the shredded cheese?
Answer: white

Table 6: Illustrative examples from the KWordinaryVQA dataset.
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E Length Distribution

E.1 Training Set

Figure 7: Question lengths distribution in training set.

Figure 8: Answer lengths distribution in training set.

E.2 Validation Set

Figure 9: Question lengths distribution in validation set.

Figure 10: Answer lengths distribution in validation set.

E.3 Test Set

Figure 11: Question lengths distribution in test set.

Figure 12: Answer lengths distribution in test set.

F Question Types Distribution

F.1 Training Set

Figure 13: Distribution of question types in training set.

F.2 Validation Set

Figure 14: Distribution of question types in validation
set.

F.3 Test Set

Figure 15: Distribution of question types in test set.
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