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Abstract

Cognitive distortions (CDs) are biased thought
patterns linked to conditions like depression
and anxiety. Identifying CDs in therapy con-
versations is crucial for mental health support.
Different from prior work that used rule-based
and supervised methods but struggled with con-
textual understanding and data sparsity, we in-
troduce a multi-step deep learning framework
that first detects distortions, then leverages a
machine reading comprehension module to ex-
tract distortion spans, and finally classifies their
types. The task uses a machine reading compre-
hension module to extract distortion spans for
noisy reduction, followed by a classifier to iden-
tify their types. Experimental results on a pub-
licly available benchmark dataset, which has
been widely adopted in prior studies, show that
our framework achieves superior performance
compared to strong baselines in distortion de-
tection, span extraction, and classification.

1 Introduction

Cognitive distortions (CDs) refer to biased or ir-
rational thought patterns that are often associated
with various psychological disorders, such as de-
pression, anxiety, and post-traumatic stress disor-
der (Beck, 2020). These distortions manifest in
everyday conversations, e.g., patients and thera-
pists, and can significantly hinder the therapeutic
process (Beutel et al., 2019). Detecting and classi-
fying cognitive distortions accurately within such
interactions are crucial for multiple purposes, in-
cluding practical applications such as enhancing
therapeutic interventions (Chen et al., 2023b) and
personalized mental health care (Shreevastava and
Foltz, 2021), as well as research directions such as
probing the reasoning ability of Large Language
Models (LLMs) (Chen et al., 2023b; Wang et al.,
2024; Lim et al., 2024).

*Corresponding Author.

Traditional methods for detecting cognitive dis-
tortions rely heavily on manual annotation and rule-
based systems, which are limited in their scalability
and ability to capture the subtle nuances of natural
language (Shreevastava and Foltz, 2021). For ex-
ample, Shreevastava and Foltz 2021 introduced a
supervised learning framework for detecting CDs
in patient-therapist interactions, leveraging feature
engineering. Despite its success, this approach
faces a major challenge relating to the use of the
entire input (full speech text) that may add noisy
information to CD models.

Figure 1: Example of cognitive distortion span extrac-
tion and classification. The full patient speech includes
a distortion span (<start pos> and <end pos>). While
our model correctly predicts the distortion type based
on the span, Shreevastava and Foltz (2021) using the
full speech incorrectly classifies it as “Mind Reading”.

Let us take Figure 1 as an example. The patient’s
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speech contains a distortion span marked by start
and end positions. When the model makes a predic-
tion based on the full patient’s speech, it incorrectly
classifies the distortion as Mind Reading (Shreevas-
tava and Foltz, 2021), likely due to the presence of
unrelated or misleading context. However, when
focusing solely on the distortion span, our model
correctly identifies the distortion type as Labeling.
This demonstrates the importance of isolating the
distorted segment for accurate classification. Based
on this observation, we argue that the performance
of CD models can be improved by using distortion
information extracted from the patient’s speech.

This paper introduces a multi-step framework
that takes advantage of span extraction for distor-
tion detection. The framework consists of three
main steps: (1) cognitive distortion detection, (2)
distortion span extraction, and (3) distortion clas-
sification. The core hypothesis is that essential
signals for distortion detection are often localized
within a small portion of the input context. To
address this, the framework first pinpoints these
critical spans via a span extraction module, fol-
lowed by a classification module that categorizes
the type of distortions. The span extraction mod-
ule uses pre-trained language models (PLMs) (e.g.,
BERT) to capture fine-grained semantic dependen-
cies and contextual cues, enhancing detection per-
formance. The framework is evaludated on the
benchmark dataset introduced by Shreevastava and
Foltz (2021), and experimental results demonstrate
significant improvements over previous methods
across multiple metrics. This paper makes two
main contributions as follows.

• It introduces a framework for detecting and
classifying cognitive distortions from patient-
therapist interactions. The framework in-
cludes three steps: distortion detection, dis-
tortion span extraction, and final distortion
classification in a single pipeline.

• It conducts a comprehensive evaluation on a
publicly available dataset, demonstrating clear
improvements across multiple metrics such as
accuracy, precision, recall, and F1-score.

2 Related Work

Cognitive distortions are closely associated with
mental health disorders such as depression and anx-
iety (Beck, 2020). The automatic detection and
classification of such distortions has garnered in-

creasing attention, particularly with advancements
in natural language processing (NLP) and LLMs.

Shreevastava and Foltz (2021) introduced one
of the first publicly available datasets focusing on
cognitive distortions in patient speech. They anno-
tated 2,531 utterances with both binary (distorted or
not) and multi-class (distortion type) labels. Their
semi-supervised approach leveraged labeled and
unlabeled data but faced challenges in generaliz-
ability and interpretability due to limited context
and data scale. To enhance interpretability, Chen
et al. (2023c) proposed the Diagnosis of Thought
(DoT) prompting framework, which utilizes LLMs
such as ChatGPT and GPT-4. The DoT approach
follows a structured reasoning process that consists
of three steps: subjectivity assessment, contrastive
reasoning, and schema analysis. Their results show
that this method outperforms zero-shot baselines
and provides clinically meaningful explanations, as
confirmed by evaluations from licensed therapists.

Building on this foundation, Lim et al. (2024)
introduced the Extraction, Reasoning, and Debate
(ERD) framework, which employs multi-agent rea-
soning among LLMs to reduce diagnostic bias and
improve performance in multi-class classification.
Singh et al. (2024) investigated multimodal LLMs
that integrate textual, auditory, and visual signals
to improve zero-shot detection of distortions in
patient–doctor interactions. Lin et al. (2024) de-
veloped a Mandarin-language dataset containing
parallel reframing examples, enabling models to
both detect distortions and suggest positive alterna-
tives grounded in psychological theory.

In terms of scalability, Kim and Kim (2025) in-
troduced KoACD, a large-scale dataset in Korean
focusing on adolescent populations, and Babacan
et al. (2025) leveraged GPT-4 to generate synthetic
training data for cognitive distortion classification.
While these datasets contribute to broader cover-
age across languages and domains, they are less
applicable to our setting, which targets English
patient–therapist interactions. Therefore, in this
paper we evaluate our framework on the bench-
mark dataset introduced by Shreevastava and Foltz
(2021).

While sharing the goal of cognitive distortion
detection with Shreevastava and Foltz (2021) and
Chen et al. (2023c), our work differs by adding
a span extraction stage formulated as a machine
reading comprehension (MRC) task. This step iso-
lates distortion-relevant text, reducing noise and
improving classification accuracy.
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Figure 2: The proposed framework using machine learning techniques.

3 Methodology

3.1 Problem Statement
Cognitive distortions are irrational thought patterns
that negatively impact mental health. Given an
input text x (n tokens) (a conversation between
a patient and a therapist), our goal is to (1) as-
sess whether x contains any CD, (2) extract the
span(s) responsible for the distortion, and (3) clas-
sify each extracted span into one of K predefined
categories. We formalize the overall problem of
cognitive distortion analysis in patient–therapist
conversations as three learning subtasks: cogni-
tive distortion detection (Section 3.3), distortion
span extraction (Section 3.4), and distortion type
classification (Section 3.5). Each task is trained
independently with its objective function.

3.2 Overview of the Framework
Figure 2 shows the proposed framework for dis-
tortion detection and classification. The proposed
framework consists of three primary components:
distortion detection, the extraction of cognitive dis-
tortions using span extraction, and the classifica-
tion of these distortions into specific types. The
system processes patient–therapist interaction texts
through a multi-stage pipeline designed to identify
and classify cognitive distortions.

3.3 Cognitive Distortion Detection
Detection is performed first to filter out distortion-
free utterances. This reduces noise and search
space, making span extraction and type classifi-
cation more accurate and efficient.

The first step detects whether each patient utter-
ance is distortion-free or not. To do that, we formu-
late the detection as a binary classification problem

that involves learning a classifier fd : X → {0, 1}
which determines whether an utterance xi contains
a cognitive distortion. The prediction is denoted
as:

yi = fd(xi; θ)

The detection is done in three steps: pre-
processing, feature representation, and classifica-
tion.

Pre-processing The dataset used for training the
model is first preprocessed. This involves clean-
ing the text, tokenizing it into smaller units (to-
kens), and converting it into a format suitable for
input into the MRC model. Text normalization
techniques, such as removing stop words and punc-
tuation, are applied to improve the quality of the
input data. We employ the nltk and re libraries for
basic text preprocessing, such as lowercasing, punc-
tuation removal, and stop-word filtering. For PLM-
based models (e.g., BERT, RoBERTa, DeBERTa),
we apply only minimal preprocessing. Specifically,
we rely on the model-specific subword tokeniza-
tion and encoding provided by the Hugging Face
AutoTokenizer1, with lowercasing applied only
when using uncased variants. We avoid aggres-
sive transformations such as stop-word removal
or punctuation stripping, since these may discard
semantically informative tokens and harm PLM
performance.

Class conversion The original dataset contains
multiple classes representing different types of cog-
nitive distortions, such as Labeling, Mind Reading,
Catastrophizing, etc. To make the dataset suitable
for the task of distortion detection, we convert
these original classes into two binary categories:

1https://huggingface.co/docs/transformers
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Distortion and No-distortion. All samples that
contain any specific type of cognitive distortion
are grouped under the Distortion class, while the
rest (including normal or undefined responses) are
labeled as No-distortion. This conversion enables
the use of binary classification models while pre-
serving the key distinction between distorted and
non-distorted content. Tables 1 and 2 shows the
statistics of labels of original and converted classes.

Table 1: Original class distribution.

Original Class Sample Count
No-distortion 933
Mind Reading 239
Overgeneralization 239
Magnification 195
Labeling 165
Personalization 153
Fortune-telling 143
Emotional Reasoning 134
Mental filter 122
Should statements 107
All-or-nothing thinking 100

Table 2: Binary class distribution.

Binary Class Sample Count
Distortion 1597
No-distortion 933

Feature representation. In this work, we adopt
three different methods to represent an input con-
versation x as contextual vectors. The first method
is Bag-of-Word (BoW) that creates a dictionary
on the whole corpus and then maps each input xi
to a fixed-size vector (Joachims, 1998). The sec-
ond method is TF-IDF that focuses more on the
importance of words in the corpus (Ramos, 2003).

The third feature representation method lever-
ages PLMs such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), or DeBERTa (He et al.,
2023).

This is because these PLMs were trained with
a huge amount of data to capture contextual in-
formation of input tokens. Given an input xi, the
framework adds a new [CLS] token to xi to form a
new sequence: [CLS] xi. This sequence is fed into
PLMs, and we take the hidden representation of the
[CLS] token from the final encoder layer to form
H. The vector H is then passed to a classification
layer for prediction.

Classification Given contextual vectors from fea-
ture representation, classification uses two types of
methods: traditional and PLMs. Traditional meth-
ods use BoW and TF-IDF features, and PLMs use
the hidden vectors H for classification. Results are
shown in Tables 4 and 5.

3.4 Distortion Span Extraction

Span extraction aims to identify one or more
spans within the input xi that correspond to dis-
torted expressions. Each span is defined as si =
(starti, endi) ⊂ xi, and the set of all extracted spans
(m spans) is represented as follows.

P = fse(x; θ), where P = {p1, p2, . . . , pm}.

We observed that distortion cues are localized
to small segments rather than the entire utterance
(Shreevastava and Foltz, 2021). Different from
prior work that fed the whole utterance xi for the
final classification, we argue that using the full ut-
terance may introduce noise for classifiers. To mit-
igate this, the framework extracts distortion spans
from each utterance xi for the final classification.

The extraction is formulated as a MRC (Machine
Reading Comprehension) problem due to two rea-
sons. First, MRC models can be utilized to pin-
point specific segments within a patient’s narrative
that indicate distorted thinking. By framing the
detection task as a question-answering problem,
the model can be prompted with questions such as,
"What part of the text reflects a cognitive distor-
tion?" This formulation allows the framework to
focus on extracting evidence-based segments that
signify distorted thoughts (Nguyen et al., 2023;
Chen et al., 2023a). Second, recent studies have
shown the efficacy of MRC frameworks in clinical
concept extraction, highlighting their potential in
identifying nuanced psychological patterns, includ-
ing cognitive distortions (Chen et al., 2023a).

Given an input utterance xi = {w1, w2, ..., wn}
consisting of n tokens, we obtain its contextualized
representations H = {h1,h2, ...,hn} from the
PLM encoder. The span extraction module then pre-
dicts a set of distortion spans P = {p1, p2, ..., pm},
where each span si is represented by its start and
end positions (S,E ∈ Rc) following the standard
BERT QA formulation (Devlin et al., 2019).

The prediction uses a softmax over all hidden
features H to predict the start or end positions of a
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token jth for the answer span pi as follows.

pjsi =
exp(hj⊤i S)∑
i′ exp(h

j⊤
i′ S)

; pjei =
exp(hj⊤i E)∑
i′ exp(h

j⊤
i′ E)

The start and end positions of answer span pi were
calculated as follows.

si = argmaxi(p
j
si); ei = argmaxi(p

j
ei)

For training, we utilize annotated datasets in
which each distortion instance is labeled with its
corresponding text span. These gold spans serve as
supervision signals for the model to learn start and
end token positions using cross-entropy loss. Table
6 shows results of the extraction.

3.5 Cognitive Distortion Classification
The final step is to predict distortion types of each
input utterance xi using the extracted spans in Sec-
tion 3.4. For each patient utterance xi, the span
si identified in the previous step is classified by a
model fcl into one of K distortion categories:

ci = fcl(si; θ), ci ∈ {1, 2, . . . ,K}.

Followed by Section 3.3, the framework uses
three types of feature representation: BoW, TF-
IDF, and contextual vectors from PLMs (BERT,
RoBERTa and DeBERTa). The final classification
also follows methods in Section 3.3.

To improve classification accuracy, we fine-tune
pre-trained language models (BERT, RoBERTa,
DeBERTa) on labeled spans. Each span si is passed
through a classification head (a linear layer and
softmax) to predict distortion types. The models
are optimized using cross-entropy loss and AdamW
optimizer (Loshchilov and Hutter, 2019), with early
stopping applied based on validation performance.

4 Experimental Settings

4.1 Dataset
Experiments were conducted on the annotated
dataset introduced by Shreevastava and Foltz
(2021). It contains 2,531 utterances extracted from
real-world patient-therapist sessions. Each utter-
ance is annotated with binary labels (distortion or
non-distortion). If distorted, it is further classi-
fied into one of ten predefined cognitive distortion
types (Table 3). The dataset also includes start and
end positions of distortion spans. It was split into
training and test sets using an 80/20 ratio, ensuring
consistent distribution across distortion categories.

4.2 Settings

Our proposed framework consists of three core
components, each trained under the following set-
tings.

Distortion detection. We treat distortion assess-
ment as a binary classification task. Following
Shreevastava and Foltz (2021), we experiment with
five machine learning models: Logistic Regres-
sion (Hosmer et al., 2013), Support Vector Ma-
chines (SVM) (Cortes and Vapnik, 1995), De-
cision Tree (Safavian and Landgrebe, 1991), k-
NN (Cover and Hart, 1967), and MLP (Rumelhart
et al., 1986). Each classifier is trained with two
types of feature representations: Bag-of-Words
(BoW) and TF-IDF. In addition, we fine-tune
BERT, RoBERTa, and DeBERTa (Devlin et al.,
2019; Liu et al., 2019; He et al., 2023) for binary
classification using Hugging Face’s Transformers
library (Wolf et al., 2020). For fine-tuned PLMs,
we use a batch size of 16, learning rate of 2e-5,
AdamW optimizer, and train for 5 epochs.

Distortion span extraction. This task is formu-
lated as a span-based question answering problem,
following the MRC paradigm. Given an utterance
and a query such as “Which part of the text reflects
a cognitive distortion?”, the model outputs the rel-
evant span. We fine-tune BERT, RoBERTa, and
DeBERTa using the Hugging Face QA pipeline2.
Training is performed with a batch size of 12, learn-
ing rate of 3e-5, AdamW optimizer, and 3 epochs.

Cognitive distortion type classification. After
extracting distortion spans, the framework classi-
fies them into specific distortion categories. We
employ the same feature representations and classi-
fiers as distortion detection. For fine-tuned PLMs,
we use a batch size of 16, learning rate of 2e-5, and
5 epochs.

4.3 Evaluation Metrics

Each subtask is evaluated using task-appropriate
metrics as follows. Distortion detection uses F1
score for the positive class (i.e., distorted utter-
ances) (Shreevastava and Foltz, 2021). Span ex-
traction uses Exact Match (EM) and token-level
F1 score, following common practice in span-based
QA tasks (Rajpurkar et al., 2016). Cognitive dis-
tortion classification uses accuracy and weighted

2https://huggingface.co/docs/transformers/
en/main_classes/pipelines#transformers.
QuestionAnsweringPipeline
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Table 3: Common cognitive distortion types and example speech (Beck, 2020; Shreevastava and Foltz, 2021).

Cognitive Distortion Type Interpretation Example Distorted Speech

Personalization Personalizing or taking up the blame for a situation that involved many factors
outside the person’s control.

My son is pretty quiet today. I wonder what I did to upset him.

Mind Reading Suspecting what others are thinking or the motivations behind their actions. My house was dirty when my friends came over; they must think
I’m a slob!

Overgeneralization Drawing major conclusions based on limited information. Last time I was in the pool I almost drowned; I am a terrible
swimmer and should not go into the water again.

All-or-nothing thinking Seeing a situation as either black or white with no middle ground. If I cannot get my Ph.D., then I am a total failure.

Emotional reasoning Letting feelings override factual evidence. Even though Steve is here at work late every day, I know I work
harder than anyone else at my job.

Labeling Assigning a fixed label to oneself or others without deeper examination. My daughter would never do anything I disapproved of.

Magnification Emphasizing the negative or minimizing the positive aspects of a situation. My professor said he made some corrections on my paper, so I
know I’ll probably fail the class.

Mental filter Focusing only on the negatives of a situation. My husband says he wishes I was better at housekeeping, so I
must be a lousy wife.

Should statements Creating rigid rules about how one or others should behave. I should get all A’s to be a good student.

Fortune-telling Predicting that things will turn out badly without evidence. I was afraid of job interviews so I decided to start my own thing.

F1 score to account for class imbalance across ten
categories.

5 Results and Discussion

5.1 Performance Comparison
This section reports the comparison of the proposed
framework to baselines for three problems: distor-
tion detection, span extraction, and distortion clas-
sification. All reported metrics are computed on
the held-out test set.

5.1.1 Distortion detection
Performance with traditional methods To eval-
uate the effectiveness of different feature represen-
tations for cognitive distortion detection, we experi-
mented with various linguistic and semantic feature
sets. These include Sentence Embeddings using
SIF (Arora et al., 2017), BERT-based embeddings
(Reimers and Gurevych, 2019), psycholinguistic
features from LIWC (Pennebaker et al., 2001), Part-
of-Speech (POS) tags (Toutanova et al., 2003), and
combinations thereof. The results of these repre-
sentations are derived from original papers (Shree-
vastava and Foltz, 2021) for fair comparison. Ad-
ditionally, we compared these against our features:
BoW and TF-IDF (Section 3.3).

As shown in Table 4, simple lexical representa-
tions such as BoW and TF-IDF consistently out-
perform more complex embedding-based features
in this task. TF-IDF achieves the strongest over-
all results across most classifiers, while BoW also
performs competitively, particularly with certain
tree-based methods. Among the learned embed-
ding approaches, combinations incorporating psy-
cholinguistic features (e.g., LIWC) yield moderate
improvements, highlighting that such features still
hold value for cognitive distortion assessment.

Table 4: Evaluation of traditional methods. LR: Logistic
Regression, DT: Decision Tree. Reported metric is F1.
† Results copied from Shreevastava and Foltz (2021).

Feature LR SVM DT k-NN MLP
SIF † 0.75 0.77 0.65 0.74 0.73
BERT † 0.74 0.79 0.67 0.75 0.70
LIWC † 0.77 0.78 0.67 0.76 0.77
POS † 0.73 0.77 0.66 0.75 0.72
BERT+LIWC † 0.74 0.76 0.64 0.75 0.74
BoW (our) 0.77 0.80 0.71 0.71 0.74
TF-IDF (our) 0.81 0.81 0.70 0.79 0.78

These findings suggest that, for this domain,
sparse and interpretable lexical features can be
more effective than dense contextual embeddings,
possibly due to the distinct and recurring linguistic
markers associated with distorted thinking.

Comparison of PLMs Table 5 shows the detec-
tion results using BERT, RoBERTa and DeBERTa.
Compared to traditional methods in Table 4, the
detection using PLMs obtains better performance.
This is because PLMs were trained with a huge
amount of data. When fine-tuning for downstream
tasks, they usually produce better accuracy than tra-
ditional methods, which have much smaller model
sizes.

Table 5: Distortion detection with PLMs.

Models Precision Recall F1
BERT-base 0.76 0.89 0.82
BERT-large 0.76 0.91 0.83
RoBERTa-base 0.76 0.93 0.84
RoBERTa-large 0.77 0.93 0.84
DeBERTa-v3-base 0.78 0.91 0.84
DeBERTa-v3-large 0.78 0.91 0.84
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5.1.2 Span extraction

Table 6 shows that model capacity and architec-
tural design both play an important role in distor-
tion span extraction. Larger variants of BERT and
RoBERTa consistently outperform their base coun-
terparts, suggesting that increased parameterization
enhances the ability to capture fine-grained cues.
Moreover, DeBERTa-v3 achieves the strongest
overall performance, indicating that architectural
refinements such as disentangled attention further
improve span identification beyond mere scaling.

Table 6: Evaluation of distortion extraction.

Models EM F1
BERT-base 72.92 84.11
BERT-large 77.27 87.46
RoBERTa-base 75.89 85.23
RoBERTa-large 77.08 85.77
DeBERTa-v3-base 78.26 88.05
DeBERTa-v3-large 78.54 88.47

These findings support the feasibility of formu-
lating cognitive distortion extraction as a machine
reading comprehension problem and demonstrate
that contextualized language models are effective
in capturing fine-grained psychological patterns.

5.1.3 Cognitive distortion classification

This section shows the performance of distortion
classification in two settings: using two steps (span
extraction and classification) and the full pipeline.
This design isolates classifier performance from
upstream errors and reveals how detection mistakes
propagate to final classification.

Step-wise evaluation with traditional methods
The classification task was performed on two set-
tings: the full speech text and the extracted dis-
torted spans (distorted parts). The full speech text
uses the whole utterance for classification. The
extracted distorted spans use extracted spans from
Section 3.4 for classification. We also include gold
labels to observe the gaps between extracted spans
and gold-labeled spans.

Table 7 shows consistent trends across traditional
and transformer-based models. Using entire ut-
terances leads to lower performance due to noise
and irrelevant content, whereas gold-standard spans
yield clear improvements. Automatically extracted
spans perform close to the gold setting, indicating
that the extraction step effectively reduces noise
while retaining task-relevant information.

Table 7: Results for cognitive distortion classification
with step-wise and full pipeline. † Results copied from
Shreevastava and Foltz (2021).

Speech Part Methods BoW TF-IDF

Acc F1 Acc F1

Full speech

K-NN † – – – 0.24
Logistic Reg. 0.23 0.23 0.24 0.19
SVM 0.19 0.19 0.28 0.24
Decision Tree 0.13 0.13 0.16 0.16
K-NN 0.16 0.16 0.19 0.20
MLP 0.23 0.23 0.25 0.24

Acc F1

BERT-base 0.27 0.25
BERT-large 0.29 0.28
RoBERTa-base 0.28 0.28
RoBERTa-large 0.30 0.33
DeBERTa-base 0.25 0.25
DeBERTa-large 0.27 0.28

Distortion span
extraction (gold)

Logistic Reg. 0.32 0.32 0.35 0.31
SVM 0.32 0.32 0.35 0.35
Decision Tree 0.20 0.20 0.17 0.18
K-NN 0.16 0.15 0.20 0.20
MLP 0.32 0.32 0.32 0.32

Acc F1

BERT-base 0.41 0.42
BERT-large 0.47 0.47
RoBERTa-base 0.43 0.44
RoBERTa-large 0.47 0.48
DeBERTa-base 0.43 0.43
DeBERTa-large 0.45 0.47

Distortion span
extraction (ours)

Logistic Reg. 0.31 0.31 0.32 0.28
SVM 0.31 0.31 0.31 0.30
Decision Tree 0.18 0.19 0.19 0.19
K-NN 0.16 0.15 0.23 0.23
MLP 0.30 0.29 0.29 0.28

Acc F1

BERT-base 0.38 0.39
BERT-large 0.41 0.42
RoBERTa-base 0.43 0.44
RoBERTa-large 0.45 0.46
DeBERTa-base 0.42 0.42
DeBERTa-large 0.41 0.43

Full pipeline

Logistic Reg. 0.28 0.29 0.29 0.28
SVM 0.25 0.24 0.26 0.23
Decision Tree 0.14 0.17 0.16 0.19
K-NN 0.11 0.13 0.21 0.21
MLP 0.25 0.28 0.26 0.28

Acc F1

BERT-base 0.33 0.36
BERT-large 0.36 0.40
RoBERTa-base 0.36 0.39
RoBERTa-large 0.38 0.42
DeBERTa-base 0.38 0.41
DeBERTa-large 0.40 0.42
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Evaluation with PLMs For transformer-based
models, a similar trend is observed. Full-speech
inputs result in the lowest performance, gold-
standard spans lead to the largest gains, and au-
tomatically extracted spans maintain performance
levels close to the gold spans. These results re-
inforce the hypothesis that focusing on distorted
segments is an effective strategy for improving cog-
nitive distortion classification.

Full pipeline evaluation We further evaluate the
full pipeline performance, where span extraction
and classification are executed in sequence. The
lower part of Table 7 shows that transformer-based
models still outperform traditional ones. Compared
to classification on gold spans, these results of the
full pipeline show competitive performance, which
is still better than directly using full text. The scores
of traditional classifiers using the full pipeline are
better than those of using full speech. This con-
firms the contribution of distortion span extraction.
However, the performance of methods using distor-
tion span extraction is sill better than that of using
full pipeline due to error accumulation.

5.1.4 Discussion with LLM-based models
Here we compare our framework, which relies on
relatively small models, with LLMs that contain
orders of magnitude more parameters.

Table 8: LLM-based models results. (⋆) results copied
from Chen et al. (2023c). Numbers in subscript denote
the standard deviation over five runs.

Methods
Distortion
Detection

(F1)

Distortion
Classification
(Weighted F1)

Full training⋆ 75.00 24.00

Vicuna⋆ 73.810.95 11.230.78

ChatGPT⋆ 73.470.58 19.241.00
ChatGPT + ZCoT⋆ 77.101.21 20.211.02
ChatGPT + DoT⋆ 81.190.11 22.250.70

GPT-4⋆ 83.040.51 33.860.83
GPT-4 + ZCoT⋆ 81.971.21 33.221.36
GPT-4 + DoT⋆ 82.770.81 34.641.40

RoBERTa-base (our) 84.00 44.00

The higher scores of our method in Table 8 do
not imply a direct superiority over the GPT-based
approaches, but rather reflect the advantage of task-
specific fine-tuning. This is because while the GPT-
based methods in Table 8 operate in a zero-shot
setting, our RoBERTa-base model is fine-tuned on
the target dataset. This table is included to pro-

vide an additional observation on the performance
gap between large, general-purpose LLMs without
training on domain data and smaller, fine-tuned
transformer models.

5.2 Error Analysis
Table 9 presents two representative cases. In
Case 1, the full-speech model is misled by mind-
reading cues (“people like me, they are inspired
by me”), while our span-based model focuses on
self-labeling expressions (“i’m . . . a very confi-
dent person”, “i’m not shy at all”), leading to the
correct prediction of Labeling. In Case 2, the ut-
terance contains threat amplification and conse-
quence escalation (“every little thing . . . terrified”,
“physically can’t sleep”, “so afraid”), which indi-
cate Magnification. However, the full-speech
model is influenced by generalization cues, pre-
dicting Overgeneralization, and our span-based
model is biased by first-person pronouns and self-
reference, predicting Personalization.

Table 9: Examples of two representative cases in error
analysis.

Case 1: Full-speech mis-
classified, span prediction
correct

Case 2: Both full-speech
and span prediction mis-
classified

Patient speech (shortened):
“. . . mostly people like me,
they are inspired by me
. . . but each time I just push
them away . . . ”

Patient speech (shortened):
“. . . every little thing is mak-
ing me terrified . . . unless I
take benedryl I physically
can’t sleep . . . minor hallu-
cinations . . . ”

Extracted span: “i’m not
shy at all . . . i’m a very
confident person . . . i don’t
even hesitate to talk with
strangers . . . ”

Extracted span: “I
see the light flicker-
ing . . . someone’s there
. . . every little thing is
making me terrified . . . I
physically can’t sleep . . . ”

Gold: Labeling Gold: Magnification

Full-speech prediction:
Mind Reading

Full-speech prediction:
Overgeneralization

Extracted span prediction:
Labeling

Extracted span prediction:
Personalization

6 Conclusions

This paper presented a multi-step framework for
cognitive distortion analysis in patient–therapist di-
alogues. Unlike prior studies that operate on full
utterances, the proposed method explicitly models
distortions at the span level by formulating span ex-
traction as a machine reading comprehension task.
The framework first detects whether a cognitive dis-
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tortion is present, extracts the corresponding text
spans, and then classifies them into fine-grained dis-
tortion categories. By isolating distortion-relevant
spans, the approach reduces irrelevant context and
enhances both interpretability and classification ac-
curacy.

Comprehensive experiments on a benchmark
dataset demonstrated consistent improvements over
strong baselines, including traditional feature-
based classifiers and pre-trained language models
applied directly to full utterances. Span-level mod-
eling was shown to yield notable gains in multi-
class classification, with transformer-based models
such as RoBERTa and DeBERTa achieving state-
of-the-art performance. These findings indicate
that sub-utterance representations are more effec-
tive than coarse-grained utterance-level inputs, par-
ticularly in domains requiring nuanced semantic
distinctions.

The study also contributes to the growing body
of computational methods for supporting cognitive-
behavioral therapy (CBT). By aligning the model-
ing pipeline with the way distortions are annotated
in clinical practice, the proposed framework pro-
vides results that are both more accurate and more
interpretable, making it a promising step toward
real-world mental health applications.

Future research directions include extending
the framework to multi-span extraction and label-
aware span selection, validating the approach on
multilingual and cross-domain datasets such as
KoACD and synthetic corpora, and incorporating
multimodal signals (e.g., prosody, facial expres-
sions, dialogue context) to enhance robustness in
naturalistic settings.

Overall, the findings establish span-based cogni-
tive distortion detection as a promising research di-
rection, bridging the gap between automated NLP
techniques and clinically meaningful psychological
constructs. This framework lays the foundation for
more accurate, interpretable, and clinically applica-
ble systems in computational mental health.

Limitations

While the proposed framework performs well on
the benchmark dataset, it relies on supervised span
annotations, which may be unavailable in some
domains. Evaluation is limited to English pa-
tient–therapist interactions, leaving its applicability
to other languages, cultures, and settings untested.
The current approach also focuses solely on textual

data, excluding multimodal cues such as prosody
or facial expressions.
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This work uses publicly available, anonymized
datasets for research purposes. The system is in-
tended to support, not replace, mental health pro-
fessionals, and should not be used as a stand-alone
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be monitored to avoid misclassification and possi-
ble harm in clinical contexts.
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