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Abstract

This paper examines whether Transformer-
based language models can generalize over
abstract syntactic structures in low-
resource languages. Focusing on Korean
subject—verb honorific agreement, we
evaluate KoBERT and KoGPT-2 using
classification and attention analyses before
and after fine-tuning. Results show that
KoGPT-2, especially after fine-tuning,
outperforms KoBERT in  handling
structurally ~ complex  constructions.
Attention analyses reveal that KoGPT-2
shows more syntactic alignment than
KoBERT, although inconsistently. Both
models remain susceptible to interference
from honorific attractors. These findings
highlight key differences between
autoregressive and masked LMs in
syntactic generalization and show that
attention may reflect syntactic structure but
not reliably indicate  grammatical
competence.

1 Introduction

Transformer-based language models have achieved
strong performance across a wide range of natural
language processing tasks. Although growing
evidence suggests that these models implicitly
encode aspects of syntactic knowledge (Clark et
al., 2019; Hewitt & Manning, 2019; Lin, Tan, &
Frank, 2019; Wilcox, Futrell, & Levy, 2024), it
remains unclear to what extent they can track
syntax-sensitive dependencies and generalize over
abstract syntactic structures independently of
lexical content. Most work has focused on high-
resource languages like English, while low-
resource languages such as Korean—making up
less than 1% of web content—pose unique
challenges due to limited data. This study uses
Korean to evaluate the syntactic knowledge
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encoded in Transformer-based models, focusing
specifically on subject—verb honorific agreement.

Although sentences appear linear on the
surface, linguistic theory has shown language is
fundamentally hierarchical. This raises the
question of whether language models can capture
such structural information beyond surface
patterns. A common strategy for probing syntactic
generalization involves agreement phenomena,
where two linguistic elements must match in
morphosyntactic features. For instance, Goldberg
(2019) showed BERT (Devlin et al, 2019)
performs well on subject—verb agreement in
English, suggesting that Transformer-based models
can track syntactic dependencies. Bacon and
Regier (2019) replicated these findings with
accuracy above 90% across 26 languages. Their
results further showed that model performance
declines in the presence of agreement attractors and
longer dependencies. More recently, Lasri, Lenci,
and Poibeau (2022) demonstrated that
Transformer-based models’ generalization abilities
are not fully lexically independent, particularly
when processing sentences with attractors. Chaves
and Richter (2021) similarly observed that while
BERT encodes rich syntactic representations, it
often relies on shallow heuristics (see also Wu &
Dredze, 2020), in contrast to GPT-2 (Radford,
2019), which exhibited more informed behavior
(Chang & Bergen, 2024). Taken together, these
findings highlight the need for further investigation
into the syntactic generalization capacities of
language models, especially in typologically
diverse and low-resource languages.

To this end, the present study evaluates the
syntactic generalization abilities of KoBERT (Jeon,
Lee, & Park, 2019) (92 million parameters) and
KoGPT-2 (Jeon, 2021) (125 million parameters),
using subject—verb honorific agreement in Korean.
By evaluating model behavior before and after
fine-tuning, we examine whether syntactic
knowledge can emerge in the absence of explicit



syntactic modules, and how such knowledge
interacts with attention mechanisms. This study
contributes to our understanding of how neural
language models engage with syntactic structure in
a low-resource language, with implications for
multilingual NLP and model interpretability.

2 Subject—Verb Honorific Agreement in
Korean

Korean is an agglutinative SOV language in which
each morpheme typically encodes a distinct
grammatical function. For example, the honorific
marker -si- attaches to a verb to signal respect for
the subject (1). While the use of -si- is optional
when the subject is honorifiable (2), it becomes
ungrammatical with an unhonorifiable subject (3)
(Sohn, 2001). Such violations elicit a P600
response (Kwon & Sturt, 2024), similar to effects
reported for number and person agreement
violations in English (Osterhout & Mobley, 1995)
and Spanish (Barber & Carreiras, 2003). This
suggests that Korean honorific agreement is
processed as syntactic information, akin to other
agreement phenomena.

(1) Honorifiable subject with -si-

emenim-i wu-si-ess-ta
mother-nom  cry-HON-past-decl
‘Mother cried.’

(2) Honorifiable subject without -si-

emenim-i wul-ess-ta
mother-nom  cry-past-decl
‘Mother cried.’

(3) Unhonorifiable subject with -si-
*kkoma-ka Wu-si-ess-ta
kid-nom cry-HON-past-decl
“The kid cried.’

That is, subject—verb honorific agreement in
Korean is conditioned by the syntactic accessibility
of the subject (Yoon, 2009). While the use of the
honorific marker -si- reflects social and pragmatic
features such as respect, its grammaticality
depends on whether the subject structurally
licenses agreement. Thus, as an optional but
structurally constrained phenomenon, it provides a
unique testing ground for determining whether
language models can acquire abstract syntactic
dependencies without categorical surface cues.
Thus, this study uses subject—verb honorific
agreement to test whether Transformer-based
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language models can generalize over abstract
syntactic structures in Korean, a low-resource
language. We also evaluate whether fine-tuning on
honorific agreement data enhances models’
sensitivity to syntactic dependencies. To this end,
we constructed sentences with two syntactic
configurations illustrated in English in (4)
(Chomsky, 1981; Kwon & Polinsky, 2006): in NP1
control, the subject of the embedded verb
(underlined) is the main clause subject, NP1; in
NP2 control, it is a direct or indirect object, NP2.

NP1 control: ‘NP1, told NP2 that he; went.’
NP2 control: ‘NP1 told NP2; PRO; to go.’

To test whether KoBERT and KoGPT-2 have
learned syntactic representations, we use subject—
verb honorific agreement as a diagnostic via a
classification task and self-attention analysis.

3 Experiment

3.1

The dataset included the sentence types illustrated
in (4), along with matched ungrammatical
counterparts in which the honorific verb appears
with a structurally licit but non-honorifiable
subject. We also varied the honorific features of
structurally illicit potential subjects to test for
interference. This yielded all four NPI1-NP2
feature combinations (H-H, H-NH, NH-H, NH—
NH) across both NP1- and NP2-control types.
Since the embedded verb is always honorific, NP1-
control sentences require NP1 to be honorific, and
NP2-control sentences require NP2—regardless of
the other noun’s features. This design isolates
structural understanding from lexical honorific
effects. For clarity, sample sentences are shown in
English in (5) and (6), although the study was run
in Korean. Note that asterisks (*) indicate
grammatical violations in Korean (Sohn, 2001), as
summarized in Table 1.

Datasets

(5) NP1 control: The *kidi/teacher; told the
teacher/kid that __; closed (honorific) the door.

(6) NP2 control: The kid/teacher told the
teacher;/*kid; _; to close (honorific) the door.



Honorific features Control type
NP1 NP2 NP1 NP2

H v v

H NH v X

H X v

NH NH X X

Table 1: Grammatical acceptability of dataset

Reflecting naturally occurring distributional
patterns in Korean, the dataset contained 1,336
NPI1-control sentences and 5,304 NP2-control
sentences, which were used for training and
evaluation. We split the data into training (90%)
and test (10%) sets.

3.2 Classification task analysis

Following previous studies (e.g., McCormick,
2019; Vazquez, 2020; Wu, 2019), we implemented
a binary classification task to evaluate whether the
models could distinguish grammatically acceptable
from unacceptable sentences based on honorific
agreement. For KoBERT, we used standard
embedding techniques: token, position, and
segment embeddings (Devlin et al., 2019). Each
sentence was tokenized using the KoBERT
tokenizer, truncated or padded to a maximum
length of 256 tokens. Tokens were indexed based
on the KoBERT vocabulary. Segment embeddings
were assigned as binary indicators (0 or 1) to
distinguish ~ between  sentence  segments.
Grammaticality labels were stored separately for
use in supervised training. Training parameters
were set as follows: batch size = 16, number of
epochs = 30, random seed = 42, maximum
sequence length = 256, epsilon 8e—8, and
learning rate = 0.0001. We fine-tuned KoBERT
(Jeon, Lee, and Park 2019) on our dataset using the
BertForSequenceClassification class from
Huggingface’s Transformers library (Wolf, 2019).
Following training, we evaluated the model’s
performance on previously unseen sentences from
the test set.

The KoGPT-2 training procedure followed a
similar setup, with notable differences in input
handling and model architecture. Unlike BERT,
GPT-2 uses bytepair encoding (BPE) instead of
WordPiece tokenization. In terms of training
objectives, BERT is trained using masked language
modeling and next-sentence prediction, whereas
GPT-2 is trained using a causal (left-to-right)
language modeling objective. Additionally, BERT
processes input bidirectionally, while GPT-2
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processes text unidirectionally, from left to right,
without relying on special [CLS] or [SEP] tokens.

We used KoGPT-2-base-v2 (Jeon, 2021),
implemented using the
GPT2ForSequenceClassification and
PreTrainedTokenizerFast classes from  the

Transformers library (Wolf, 2019).

We fine-tuned both models for 30 epochs on the
subject—verb honorific agreement dataset and
evaluated their classification accuracy and
attention alignment before and after training. This
setup allowed us to assess their ability to generalize
over syntax-sensitive dependencies and examine
whether fine-tuning enhances syntactic sensitivity
in low-resource settings.

3.3 Attention patterns analysis

Prior work has shown that attention maps in
models like BERT can capture meaningful
linguistic patterns (see Clark et al., 2019; DeRose,
Wang, & Berger 2020; Vig, 2019; Park et al., 2019;
for different views, see Jain &Wallace, 2019;
Mohankumar et al., 2020; Serrano & Smith, 2019;
Thorne et al., 2019). Thus, to investigate how the
models represent syntactic dependencies in
Korean, we conducted an attention analysis
focusing on self-attention weights originating from
the critical first verb (VERBI) in each sentence.
This verb corresponds to the embedded predicate,
where honorific agreement is morphologically
marked by -si-. The goal of the analysis was to
determine whether the model allocates greater
attention to the syntactically appropriate subject—
either the main clause subject (NP1) in NPI-
control sentences or a structurally lower NP (NP2)
in NP2-control sentences—when computing the
contextual representation of VERB1. We extracted
attention weights from VERBI to the two potential
subjects, NP1 and NP2. These values reflect the
extent to which VERBI1 attends to information
provided by each NP, serving as an indirect
measure of which constituents the model treats as
syntactically or semantically relevant.

Because KoBERT and KoGPT-2 differ in
architecture and implementation, raw attention
weights are not directly comparable across models.
To allow for meaningful comparison, we analyzed
normalized attention ratios, which capture the
relative distribution of attention across potential
antecedents (NP1 vs. NP2). Attention weights were
extracted during the models’ evaluation of sentence
grammaticality at both Epoch 1 (pre-trained) and



Epoch 30 (fine-tuned). For each trial, we computed
the attention ratio for NP1 as the proportion of
attention allocated to NP1 relative to the total
attention directed to NP1 and NP2 (i.e., NP1 Ratio
=NP1 Attention / [NP1 Attention + NP2 Attention]
x 100), and likewise for NP2. This normalized,
directional metric allows us to assess attention
patterns independently of differences in absolute
attention scale. To quantify relative attentional
preference, we then calculated an attention
difference score for each trial by subtracting the
NP2 ratio from the NP1 ratio (i.e., NP1 Ratio —
NP2 Ratio). Accordingly, positive values indicate a
preference for NP1, while negative values reflect
greater attention to NP2.

To explore how attention patterns relate to
classification outcomes, we selected 400 sentences
that were correctly classified by both models and
56 that were misclassified by both. These subsets
formed the basis of our attention analysis.
Transformer models compute attention matrices
over 12 layers and 12 heads based on tokenized
inputs. Because tokenization significantly affects
the model’s interpretation of sentence structure, it
plays a critical role in attention analysis. In this
study, we used a syllable-based tokenizer, which
occasionally led to token splitting inconsistencies
due to whitespace handling. To enhance
interpretability while preserving the basic clause
structure [NP1 NP2 VERB1 VERB2], we adopted
amodified version of the method proposed by Mun
and Shin (2025), as illustrated in Appendix A.

3.4  Statistical analyses’

Classification accuracy was analyzed using
generalized linear mixed-effects models (GLMER)
with a binomial link, implemented in R 4.2.1 (R
Core Team, 2024) via the lme4 package (Bates et
al., 2015, v1.1-31). P-values were computed using
ImerTest (Kuznetsova, Brockhoff, & Christensen,
2017, version 3.1-3). Attention data were analyzed
using linear mixed-effects regression (LMER).
Classification accuracy models included four fixed
effects: Model (KoBERT vs. KoGPT-2), Control
Type (NP1 vs. NP2), and the Honorific features of
NP1 and NP2 (H vs. NH), along with all
interactions. Attention models included Model,
Control Type, and Classification Accuracy (correct
vs. incorrect) as fixed effects. To evaluate the

! All data and analysis code are available at the following
link:
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impact of fine-tuning on syntactic sensitivity, we
compared Epoch 1 (pre-trained) and Epoch 30
(fine-tuned) performance using models with
Model, Epoch, and Control Type as predictors. All
predictors were sum-coded. Random intercepts for
sentence were included to account for trial-level
variability. Random intercepts for sentence were
included, and maximal random-effects structures
(Barr et al., 2013) were simplified for convergence.
Holm-adjusted pairwise comparisons were
conducted using the emmeans package (Lenth,
2024, v1.8.4-1).

3.5 Results and Discussion

Classification Accuracy Before and After Fine-
tuning (Epoch 1 vs. Epoch 30). Appendix B
presents the grammatical acceptability
classification accuracies for KoOBERT and KoGPT-
2. Corresponding statistical results are in Appendix
C. The analysis showed main effects of Model and
Control Type: KoGPT-2 (M = 89.7%) significantly
outperformed KoBERT (M = 81.1%), and NP2-
control sentences (M = 87.6%) were classified
more accurately than NP1-control sentences (M =
76.8%). Honorific features of NP1 and NP2 also
had main effects, indicating sensitivity to subject—
verb honorific agreement. A significant Control
Type x NP1 x NP2 interaction revealed that
classification accuracy varied by agreement
configuration. When agreement was disrupted by a
feature-matching attractor—e.g., NP1-control with
non-honorific NP1 and honorific NP2—accuracy
dropped sharply (KoBERT: 45.3%; KoGPT-2:
52.3%). In contrast, when the attractor did not
linearly intervene—as in NP2-control with
honorific NP1 and non-honorific NP2—KoGPT-2
maintained high accuracy (92.4%), correctly
identifying these sentences as ungrammatical,
whereas KoBERT’s accuracy was substantially
lower  (76.7%). KoGPT-2 significantly
outperformed KoBERT across conditions (ps
< .03), except in NPl-control sentences with
honorifiable NP1 and non-honorifiable NP2, where
KoBERT (81.3%) outperformed KoGPT-2 (69.5%)
(p <.0001).

These findings suggest that language models’
performance declines with increasing agreement
distance and feature-matching attractors that
intervene in subject—verb dependencies (Bacon &

https://osf.io/fw82j/?view_only=56b9d1dc865e453086dfbc
8957fee340



Regier, 2019; Ryu & Lewis, 2021; Lakretz et al.,
2022), paralleling patterns in human sentence
processing (e.g., Kwon & Sturt 2016, 2019). The
results were also consistent with previous studies
showing that autoregressive models like GPT-2 are
more robust to such interference and better at
maintaining long-distance syntactic dependencies,
whereas masked language models like BERT are
more susceptible to feature-based interference
from structurally irrelevant attractors (Chaves &
Richter, 2021; Lasri, Lenci, & Poibeau, 2022).

We next examined whether fine-tuning
improves the models’ sensitivity to syntactic
structure. Appendix D presents the classification
accuracy of fine-tuned KoBERT and KoGPT-2, by

control type and honorific features of NP1 and NP2.

Appendix E presents the corresponding statistics,
and Figure 1 visualizes aggregated results by
model, epoch, and control type.

KoBERT KoGPT2

epoch
H Pre-trained
Fine-tuned

A

NP1.type NP2.type NP1.type NP2.type

Figure 1. Classification accuracy aggregated across
honorific conditions, grouped by model, control
type, and training state (pre-trained vs. fine-tuned:
Epoch 1 vs. Epoch 30)

Analysis revealed significant main effects of
Model, Control type, and Epoch, indicating overall
higher accuracy for KoGPT-2 (92.4%) than
KoBERT (80.9%), and for NP2-control (88.5%)
over NP1-control (79.3%) sentences. Accuracy
also improved after fine-tuning (88.0%) compared
to the pre-trained state (85.4%). These main effects
were qualified by significant interactions,
including Model x Control type and Epoch x
Model and a three-way Model x Epoch x Control
type interaction. Holm-adjusted  pairwise
comparisons showed that KoGPT-2 exhibited
substantial gains after fine-tuning for both NP1-
control (z = —8.21, p < .001) and NP2-control
sentences (z = —9.95, p < .001). In contrast,
KoBERT showed no significant improvement for
NP1-control (z = 1.20, p = .23) and even declined
in NP2-control accuracy (z =4.01, p <.001).

During pre-training, both KoBERT and KoGPT-
2 exhibited high error rates when a feature-
matching attractor linearly intervened in subject—
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verb honorific agreement (i.e., NP1-control
sentences with a non-honorifiable NP1 and an
honorifiable NP2). After fine-tuning, both models
showed improved classification accuracy for this
construction (KoBERT: 45.3% — 61.8%; KoGPT-
2: 52.4% — 72.8%). To evaluate whether fine-
tuning reduced attractor interference, we
conducted a follow-up analysis. Focusing on NP1-
control sentences, we compared conditions in
which the honorific features of NP1 and NP2
differed (H-NH and NH—H) to those in which they
matched (H-H and NH-NH). If models adhered
strictly to syntactic structure, performance should
be unaffected by the features of an illicit subject.
However, Welch’s two-sample #-tests revealed that
mismatched conditions significantly reduced
classification accuracy for both models: H-NH vs.
H-H (KoBERT: t(1089.3) = 5.60, p < .001;
KoGPT-2: t(679.16) = 10.87, p <.001), and NH-H
vs. NH-NH (KoBERT: t(1075.9) =-6.57, p <.001;
KoGPT-2: t(635.37) = —14.25, p < .001). These
findings suggest that although fine-tuning
substantially improved KoGPT-2’s overall
accuracy and structural sensitivity, both models
remain vulnerable to honorific feature interference
in structurally complex NP1-control configurations.

Overall, the results suggest that KoGPT-2
benefits substantially from fine-tuning, showing
improved classification accuracy across both
control types. In contrast, KoBERT appears less
responsive to fine-tuning and even declined in
NP2-control performance. This divergence may
reflect architectural differences in how the two
models encode syntactic dependencies, with
KoGPT-2’s autoregressive design better supporting
structural sensitivity. Nonetheless, both models
remain vulnerable to honorific feature interference,
especially in NPl-control sentences where
structurally irrelevant NPs disrupt subject—verb
agreement.

To further examine how syntactic information is
internally represented, we next analyze the models’
attention patterns during the classification task.

Attention Patterns Before and After Fine-Tuning
(Epoch 1 vs. Epoch 30). The attention analysis
included 456 trials from the classification task that
were either correctly (n = 400) or incorrectly (n =
56) classified by both models. This set comprised
104 NP1-control and 352 NP2-control sentences.
By comparing correct and incorrect classifications,
we aimed to explore how attention patterns relate
to model performance and to identify structurally



relevant attention cues that may support accurate
classification.

Because absolute attention weights vary
between GPT-2 and BERT due to differences in
architecture and implementation, we focused on
relative attention distributions. Specifically, we
analyzed preference attention ratios, which
quantify how attention is distributed between NP1
and NP2, independent of model scale (see Section
3.3). In our analysis, positive values indicate a
preference for NP1, while negative values reflect
greater attention to NP2. Accordingly, under this
metric, a structurally aligned model should yield
more positive scores for NP1-control sentences and
more negative scores for NP2-control sentences.

Figure 2 presents the attention difference scores
by model and classification accuracy for pre-
trained KoBERT and KoGPT-2. The statistical
analysis results are presented in Appendix F.

Incorrect Correct

©
8

scores (NP1 — NP2)
>
2

Type
NP1.type
NP2.type

@
8

—

Attention difference

[

KoBERT KoGPT2 KoBERT KoGPT2

Figure 2. Attention difference scores by model and
classification accuracy for KOBERT and KoGPT-2
in their pre-trained states.

The analysis revealed significant main effects of
Model and Classification Accuracy: KoGPT-2 had
higher attention difference scores (M = 76.8, SE =
0.55) than KoBERT (M = —1.6, SE = 1.48),
suggesting that KoGPT-2 allocated more attention
to NP1 than KoBERT. Correct trials also yielded
higher scores (M = 38.7, SE = 2.84) than incorrect
ones (M = 0.29, SE = 8.89). These main effects
were moderated by significant interactions: Model
x Classification accuracy and Model x Control
type. Holm-corrected pairwise comparisons
indicated that KoBERT allocated more attention to
NP2 in incorrect trials than in correct ones (t(192)
= —4.45, p < .0001), whereas KoGPT-2 did not
show a comparable difference (t(192) = 0.45, n.s.).
In addition, KoGPT-2 allocated more attention to
NP1 in NP2-control than NP1-control sentences
(t(192) =-1.97, p = .05). In contrast, KoBERT did
not exhibit such an asymmetry (t(192) = 0.90, n.s.).

These findings suggest that, in the pre-trained
state, attention allocation patterns do not
consistently reflect syntactic roles, despite decent

classification accuracy. KoGPT-2  directed
significantly more attention to NP1 in NP2-control
sentences, where NP2 is the syntactically
appropriate subject. This indicates a misalignment
between attention and the underlying grammatical
dependencies. KoOBERT’s attention favored NP2 in
incorrect trials, likely reflecting interference rather
than accurate subject identification. Overall, these
results highlight that attention distributions in pre-
trained models may not consistently indicate
syntactic understanding. This aligns with prior
work demonstrating weak links between attention
weights and model performance or reasoning
processes (Jain & Wallace, 2019; Serrano & Smith,
2019; Mohankumar, 2020; Thorne et al., 2019).

Having established baseline attention patterns in
the pre-trained models, we next examined how
fine-tuning affected attention allocation in
KoBERT and KoGPT-2. Using the same statistical
models, we evaluated whether fine-tuning
improved the alignment between attention and
syntactic roles. Figure 3 presents the attention
difference scores (NP1 — NP2) by model,
classification accuracy, and control type for the
fine-tuned models. The corresponding statistical
analysis results are shown in Appendix G.

Incorrect Correct

ores (NP1 —NP2)
o
%

!

Type
NP1 type
NP2.type

o
&

Attention difference sc
3

KoBERT KoGPT2 KoBERT KoGPT2

Figure 3. Attention difference scores by model and
classification accuracy for fine-tuned KoBERT and
KoGPT-2

The analysis revealed significant main effects of
Model and Classification accuracy. KoGPT-2
showed lower attention difference scores (M =
—41.9, SE = 3.65) than KoBERT (M = 0.95, SE =
1.91), and correctly classified trials yielded higher
scores (M = —19.9, SE = 2.72) than incorrectly
classified ones (M = —24.3, SE = 6.11). A
significant main effect of Control type also
emerged, with NPl-control sentences eliciting
higher scores (M = —1.69, SE = 5.56) than NP2-
control sentences (M = —26.1, SE = 2.66). These
main effects were qualified by significant
interactions: Model x Control type, Model x
Classification accuracy, Control type X
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Classification accuracy, and a three-way
interaction of Model x Control type X
Classification accuracy. Holm-corrected

comparisons showed that KoGPT-2 allocated
significantly more attention to NP1—the correct
subject—in correctly classified NP1-control
sentences than in incorrect ones (¢ = —6.40, p
< .0001), indicating greater syntactic alignment.
No such effect was observed for KoGPT-2 in NP2-
control sentences (t = —0.27, p = .789) or for
KoBERT in either condition (ps > .78).

These results after fine-tuning shed light on the
interpretability of attention in Transformer models,
particularly regarding their sensitivity to syntactic
roles. The significant three-way interaction among
model type, control type, and classification
accuracy suggests that attention allocation is not
uniformly predictive of classification performance
but is modulated by both structural configuration
and model architecture. Notably, KoGPT-2 showed
a strong link between attention and classification
accuracy in NPI-control sentences after fine-
tuning, suggesting improved syntactic alignment.
This effect was absent in NP2-control sentences,
likely due to the small number of classification
errors (n = 6), which limited statistical power. In
contrast, KoBERT’s attention was unaffected by
classification accuracy following fine-tuning,
aligning with its limited performance gains during
training. This suggests that KoBERT’s attention
patterns may be less sensitive to syntactic structure
or more weakly coupled with task success, echoing
previous findings that attention weights do not
always reflect meaningful model behavior (Jain &
Wallace, 2019; Serrano & Smith, 2019;
Mohankumar, 2020; Thorne et al., 2019).

Taken together, these findings highlight the
importance of evaluating attention behavior in
relation to both model architecture and syntactic
structure. They also caution against interpreting
attention weights as direct indicators of linguistic
competence: while attention can reflect syntactic
alignment in some cases, this is not a reliable
property across models or sentence types.
KoBERT’s lack of attention modulation despite
high classification accuracy raises questions about
the interpretability of attention in masked language
models. We return to this issue in the general
discussion.
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4 General Discussion and Conclusion

This study aimed to investigate whether
Transformer-based language models can encode
abstract syntactic structures, even in the absence of
an explicit layer dedicated to syntactic
representation. We addressed this question using
Korean, a low-resource language that differs
typologically from widely studied English, by
examining model behavior through the lens of
subject—verb honorific agreement. Although
honorifics may appear socio-pragmatic in nature,
the use of the honorific suffix -si- requires a
licensing subject with matching features in a
structurally appropriate position. Accordingly, -si-
honorific agreement provides a unique testing
ground for evaluating whether language models
can acquire abstract syntactic dependencies in the
absence of categorical surface cues. To this end, we
employed both a grammaticality classification task
and a self-attention analysis to evaluate the
performance of two Korean-language models,
KoBERT and KoGPT-2, in both their pre-trained
states and after fine-tuning (i.e., before and after
exposure to honorific agreement patterns in
Korean). The training and classification datasets
included sentences featuring subject—verb
honorific agreement that varied in control type and
in the honorific features of the potential subject
NPs.

Our results offer three key contributions to the
study of syntactic generalization in neural language
models. First, although both models achieved
relatively strong classification performance—
suggesting some degree of syntactic understanding
consistent with prior work (Clark et al., 2019;
Hewitt & Manning, 2019; Lin, Tan, & Frank,
2019)—KoGPT-2  consistently  outperformed
KoBERT and responded more robustly to fine-
tuning (Chaves & Richter, 2021). Even in their pre-
trained states, KoGPT-2 generally outperformed
KoBERT. While KoBERT showed only modest
gains—or even declines—in performance after
fine-tuning, KoGPT-2 improved significantly
across both NP1- and NP2-control conditions. Both
models struggled with attractor interference, but
KoBERT appeared especially susceptible. In the
syntactically complex NP1-control condition—
where the attractor NP2 linearly intervenes
between the subject (NP1) and the verb—
KoBERT’s pre-trained accuracy was only 45.3%,
compared to 52.4% for KoGPT-2. After fine-tuning,
KoGPT-2’s performance rose to 72.8%, while



KoBERT reached only 61.8%. These findings
support prior claims that autoregressive models
like GPT-2 are better equipped to track hierarchical
dependencies than masked language models like
BERT (Chaves & Richter, 2021; Lasri, Lenci, &
Poibeau, 2022). In contrast, BERT may rely more
heavily on shallow heuristics, rendering it more
susceptible to lexical interference (McCoy, Pavlick,
& Linzen, 2019). Importantly, our use of a low-
resource language extends these insights beyond
high-resource settings yielding critical evidence
about models’ capacity to generalize over abstract
syntactic structure.

Second, our attention analyses contribute
empirical evidence to the ongoing debate about the
interpretability of attention mechanisms in
Transformer-based models. Specifically, our
results support previous claims that attention
weights do not reliably correspond to linguistic
explanations (Jain & Wallace, 2019; Serrano &
Smith, 2019; Mohankumar, 2020; Thorne et al.,
2019; Zhao et al., 2024) even though alignment
does emerge in some cases. For KoGPT-2, fine-
tuning led to greater alignment between attention
allocation and syntactic roles, but only under
specific conditions. In correctly classified NP1-
control sentences, KoGPT-2 consistently directed
greater attention to NP1, the structurally
appropriate subject. In contrast, in misclassified
NP1-control trials, attention shifted toward NP2,
suggesting that syntactically guided attention
supports successful classification. However, this
relationship is not guaranteed. For instance,
KoBERT showed no such modulation: its attention
patterns remained largely insensitive to syntactic
structure or classification outcome. Notably,
KoBERT’s classification accuracy plateaued
across training (~81%) and even declined in
certain conditions after finetuning—mirroring its
lack of syntactic alignment in attention, despite
relatively strong overall performance. These results
reinforce growing concerns that attention weights,
while useful in some contexts, may not consistently
reflect underlying grammatical knowledge or task-
relevant reasoning. They also underscore the
importance of jointly evaluating both model
performance and internal interpretability when
assessing syntactic generalization in neural
language models (Jain and Wallace 2019).

Third, our results underscore the utility of
Korean honorific agreement as a rigorous
diagnostic for evaluating syntactic sensitivity in
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language models. Unlike number agreement in
English, Korean subject—verb honorific agreement
is governed by structural licensing conditions that
are not always transparent at the surface level. The
optionality and morphosyntactic specificity of -si-
honorific agreement allow researchers to probe
whether models can move beyond surface-level
lexical heuristics and encode deeper grammatical
generalizations. On the other hand, the fact that
both KoBERT and KoGPT-2 remained susceptible
to interference from honorific attractors even after
finetuning suggests that fully abstracting over
syntactic structure—particularly in constructions
involving long-distance dependencies and feature
checking—remains a significant challenge for
current Transformer architectures.

Taken together, our findings demonstrate that
Transformer-based language models can acquire
sensitivity to morphosyntactic dependencies, even
when these dependencies are tied to socio-
pragmatic cues such as honorifics. While both
models performed reasonably well in their pre-
trained states, fine-tuning—especially for KoGPT-
2—Ied to notable improvements in classification
accuracy and more syntactically aligned attention
patterns in structurally complex sentences.
However, these gains were not uniform. KoGPT-
2’s attention aligned with syntactic roles only under
certain conditions, and KoBERT showed little
evidence of syntactically guided attention despite
moderate classification accuracy.

These results underscore the limits of using
attention as indicators of grammatical knowledge.
Attention may sometimes reflect syntactic
reasoning, but it does not reliably track structural
representations across models or constructions
(Jain & Wallace, 2019; Serrano & Smith, 2019;
Mohankumar, 2020; Thorne et al., 2019). This
study underscores the value of cross-linguistic
research, especially with low-resource languages
like Korean, whose rich morphology and flexible
word order can reveal model limitations obscured
in English-centric evaluations (cf. Chang & Bergen,
2024; Wu & Dredze, 2020).

At the same time, it is important to acknowledge
certain limitations of our study. In particular, our
analysis did not fully address how implementation
details might have influenced the results. Factors
such as tokenization (e.g., the proportion of [UNK]
tokens), differences in model size (KoBERT and
KoGPT-2 differ not only in inference type but also
in parameter scale), and the characteristics of the



pretraining corpora (e.g., written vs. spoken
language styles) could all have contributed to the
observed outcomes. To minimize potential
confounds, all test sentences were lexically
matched across the experimental conditions, with
the only differences arising from the honorific
features that served as the manipulation. This
design should therefore reduce the likelihood that
other sentence components drove the observed
effects. Nevertheless, we cannot fully exclude this
possibility, particularly given differences in the
models’ pretraining corpora.

Future research should explore whether
incorporating explicit syntactic supervision or
inductive biases—such as training on treebank-
annotated corpora or employing structure-aware
architectures—enhances models’  ability to
generalize robustly and yields more interpretable
internal  representations,  especially  across
typologically diverse languages.
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Appendices

Appendix A. N/V unit treatment and attention
transformation (Example (5))
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Appendix B. Classification accuracy results for
pre-trained KoBERT and KoGPT-2 on target
sentences  involving subject—verb  honorific
agreement. Results are grouped by the honorific
features of the two potential subject NPs (NP1 and
NP2) and by sentence control type (NP1-control
vs. NP2-control).

KoBERT
NP1 | NP2 | NPI ctrl NP2 ctrl Mean
H H | 89.1(0.01) | 86.5(0.01)
NH | 81.3(0.02) | 76.8(0.01) 81.2
NH H |45.3(0.02) | 82.8(0.01) | (0.01)
NH | 84.2(0.02) | 84.6(0.01)
KoGPT2
NP1 | NP2 | NPI ctrl NP2 ctrl Mean
H H 93 (0.01) | 94.3(0.01)
NH | 69.5(0.02) | 92.5(0.01) 89.8
NH H | 52.4(0.02) | 86.6(0.01) | (0.01)
NH | 98.4(0.01) | 97(0.01)

Appendix C. Linear Mixed Effects model results
for classification accuracy by pre-trained KoBERT
and KoGPT-2. Coefficients, standard errors, z-
values, and p-values are reported for main effects
and their interactions. The model included random
intercepts for sentence. Whether a random slope
was included for each effect is not shown here but
was considered in model fitting.

Estimate | SE z p

(Intercept) 2.281 0.05 | 4543 | .001
NP1 0.153 0.04 | 395 | .001
NP2 0176 | 0.05 | -3.51 | .001
Model 0481 004 | oo | 001
Control type | 0377 | 0.04 | -9.86 | .001
NPIINP2 | 0.821 0.04 | 21.16 | .001
NP1:Model | 0.176 0.04 | 475 | .001
NP2:Model | 0.159 0.04 | 427 | .001
NP1:Type | 0.173 0.04 | 453 | .001
NP2:Type | -0249 | 0.04 | -6.53 | .001
Model:Type | 0.131 0.04 | 3.52 .001
NP1:NP2:

Model 0285 | 004 |-7.67 |.001
NPENP2: 1 446 0.04 | 1171 | .001
Type

NPL1:Model: | 5,3 0.04 | 598 |.001
Type

NP2Model: | 067 004 |-18 | 0.08
Type

NP1:NP2:

Model:Type | 0145 | 004 | 391 | 001




Appendix D. Classification accuracy results for
fine-tuned KoBERT and KoGPT-2 on target
sentences  involving subject—verb  honorific
agreement. Results are grouped by the honorific
features of the two potential subject NPs (NP1 and
NP2) and by sentence control type

Appendix F. Linear mixed-effects model results for
attention difference scores in the pre-trained state.
Coefficients, standard errors, t-values, and p-values
are reported for the main effects and their
interactions. Whether a random slope was included
for each effect is not shown here but was
considered in model fitting.

Appendix E. Linear mixed-effects model results
for classification accuracy of KoBERT and
KoGPT-2 before and after fine-tuning (Epoch 1 vs.
Epoch 30). Coefficients, standard errors, z and p-
values are reported for the main effects, as well as
for their interactions. Whether a random slope was
included for each effect is not shown here but was
considered in model fitting.

Estimate | SE z p<
(Intercept) 3.807 0.1 37.56 | .001
Epoch 0.725 0.08 | 8.76 | .001
Model -2.182 0.1 | -21.8 | .001
Control type -0.582 0.05 | -11.46 | .001
Epoch:Model -0.905 0.08 | -10.9 | .001
Epoch:Type -0.056 0.05 | -1.08 | 0.29
Model:Type 0.321 0.05 | 6.33 | .001
Epoch:Type 0.127 0.05 | 246 | 0.02
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KoBERT Estimate | SE t p<
NPI | NP2 | NP1 ctrl NP2ctrl | Mean (Intercept) 35.625 | 1.66 | 21.41 | 001
H | H |865(0.01) 86.1(0.01) Model 41555 | 1.12 | -37.2 | .001
NH | 74.1(0.02) | 792 (0.01) ((8)06213) Controltype | -1.07 | 1.66 | -0.64 | 0.52
NH | H |61.8(0.02) | 84.4(0.01) ' Classification |, oo [ | e | 541 | 002
NH | 79.6 (0.02) | 78.5(0.01) accuracy
KoGPT2 Model: Type 2.881 1.12 | 258 | 0.02
NP1 | NP2 | NPI ctrl NP2 ctrl Mean Model: 4929 112 | 441 | 001
H H |984(0.01)| 98.8(0.01) Accuracy ] ' ] ]
NH | 79.6 (0.02) | 97.1(0.01) | 95.1 Type: 2368 | 166 | -142 | 016
NH | H |728(0.02) | 94.4(0.01) | (0.01) Accuracy
NH | 99.4 (0.01) | 97.8(0.01) Model: Type: 0285 112 | 026 | 03
Accuracy ’ ’ ’ ’

Appendix G. Linear mixed-effects model results
for attention difference scores in the fine-tuned
state. Coefficients, standard errors, t-values, and p-
values are reported for the main effects and their
interactions. Whether a random slope was included
for each effect is not shown here but was
considered in model fitting.

Estimate | SE t p<
(Intercept) -15.72 3.54 | -445 | .001
Model 1591 | 275 | 5.79 | 001
Control type 11.13 | 354 | 3.15 | 0.01
Classification | o) | 354 | 278 | 0.01
accuracy
Model:
Control type (1264 | 275 | 46 | 001
Model: 724 | 275 | 263 | 001
Accuracy
Type: 899 | 354 | 254 | 0.02
Accuracy
Model: Type: 608 | 275 | 221 | 003
Accuracy




