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Abstract 

This paper examines whether Transformer-
based language models can generalize over 
abstract syntactic structures in low-
resource languages. Focusing on Korean 
subject–verb honorific agreement, we 
evaluate KoBERT and KoGPT-2 using 
classification and attention analyses before 
and after fine-tuning. Results show that 
KoGPT-2, especially after fine-tuning, 
outperforms KoBERT in handling 
structurally complex constructions. 
Attention analyses reveal that KoGPT-2 
shows more syntactic alignment than 
KoBERT, although inconsistently. Both 
models remain susceptible to interference 
from honorific attractors. These findings 
highlight key differences between 
autoregressive and masked LMs in 
syntactic generalization and show that 
attention may reflect syntactic structure but 
not reliably indicate grammatical 
competence. 

1 Introduction 

Transformer-based language models have achieved 
strong performance across a wide range of natural 
language processing tasks. Although growing 
evidence suggests that these models implicitly 
encode aspects of syntactic knowledge (Clark et 
al., 2019; Hewitt & Manning, 2019; Lin, Tan, & 
Frank, 2019; Wilcox, Futrell, & Levy, 2024), it 
remains unclear to what extent they can track 
syntax-sensitive dependencies and generalize over 
abstract syntactic structures independently of 
lexical content. Most work has focused on high-
resource languages like English, while low-
resource languages such as Korean—making up 
less than 1% of web content—pose unique 
challenges due to limited data. This study uses 
Korean to evaluate the syntactic knowledge 

encoded in Transformer-based models, focusing 
specifically on subject–verb honorific agreement. 

Although sentences appear linear on the 
surface, linguistic theory has shown language is 
fundamentally hierarchical. This raises the 
question of whether language models can capture 
such structural information beyond surface 
patterns. A common strategy for probing syntactic 
generalization involves agreement phenomena, 
where two linguistic elements must match in 
morphosyntactic features. For instance, Goldberg 
(2019) showed BERT (Devlin et al., 2019) 
performs well on subject–verb agreement in 
English, suggesting that Transformer-based models 
can track syntactic dependencies. Bacon and 
Regier (2019) replicated these findings with 
accuracy above 90% across 26 languages. Their 
results further showed that model performance 
declines in the presence of agreement attractors and 
longer dependencies. More recently, Lasri, Lenci, 
and Poibeau (2022) demonstrated that 
Transformer-based models’ generalization abilities 
are not fully lexically independent, particularly 
when processing sentences with attractors. Chaves 
and Richter (2021) similarly observed that while 
BERT encodes rich syntactic representations, it 
often relies on shallow heuristics (see also Wu & 
Dredze, 2020), in contrast to GPT-2 (Radford, 
2019), which exhibited more informed behavior 
(Chang & Bergen, 2024). Taken together, these 
findings highlight the need for further investigation 
into the syntactic generalization capacities of 
language models, especially in typologically 
diverse and low-resource languages.  

To this end, the present study evaluates the 
syntactic generalization abilities of KoBERT (Jeon, 
Lee, & Park, 2019) (92 million parameters) and 
KoGPT-2 (Jeon, 2021) (125 million parameters), 
using subject–verb honorific agreement in Korean. 
By evaluating model behavior before and after 
fine-tuning, we examine whether syntactic 
knowledge can emerge in the absence of explicit 
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syntactic modules, and how such knowledge 
interacts with attention mechanisms. This study 
contributes to our understanding of how neural 
language models engage with syntactic structure in 
a low-resource language, with implications for 
multilingual NLP and model interpretability. 

2 Subject–Verb Honorific Agreement in 
Korean 

Korean is an agglutinative SOV language in which 
each morpheme typically encodes a distinct 
grammatical function. For example, the honorific 
marker -si- attaches to a verb to signal respect for 
the subject (1). While the use of -si- is optional 
when the subject is honorifiable (2), it becomes 
ungrammatical with an unhonorifiable subject (3) 
(Sohn, 2001). Such violations elicit a P600 
response (Kwon & Sturt, 2024), similar to effects 
reported for number and person agreement 
violations in English (Osterhout & Mobley, 1995) 
and Spanish (Barber & Carreiras, 2003). This 
suggests that Korean honorific agreement is 
processed as syntactic information, akin to other 
agreement phenomena. 

(1) Honorifiable subject with -si- 
emenim-i  wu-si-ess-ta  
mother-nom  cry-HON-past-decl 
‘Mother cried.’ 

(2) Honorifiable subject without -si- 
emenim-i  wul-ess-ta 
mother-nom  cry-past-decl 
‘Mother cried.’ 

(3) Unhonorifiable subject with -si- 
*kkoma-ka wu-si-ess-ta  
kid-nom cry-HON-past-decl 
‘The kid cried.’ 

That is, subject–verb honorific agreement in 
Korean is conditioned by the syntactic accessibility 
of the subject (Yoon, 2009). While the use of the 
honorific marker -si- reflects social and pragmatic 
features such as respect, its grammaticality 
depends on whether the subject structurally 
licenses agreement. Thus, as an optional but 
structurally constrained phenomenon, it provides a 
unique testing ground for determining whether 
language models can acquire abstract syntactic 
dependencies without categorical surface cues. 

Thus, this study uses subject–verb honorific 
agreement to test whether Transformer-based 

language models can generalize over abstract 
syntactic structures in Korean, a low-resource 
language. We also evaluate whether fine-tuning on 
honorific agreement data enhances models’ 
sensitivity to syntactic dependencies. To this end, 
we constructed sentences with two syntactic 
configurations illustrated in English in (4) 
(Chomsky, 1981; Kwon & Polinsky, 2006): in NP1 
control, the subject of the embedded verb 
(underlined) is the main clause subject, NP1; in 
NP2 control, it is a direct or indirect object, NP2.  

(4) NP1-NOM NP2-to go.emb toldmain 
NP1 control: ‘NP1i told NP2 that hei went.’ 
NP2 control: ‘NP1 told NP2i PROi to go.’ 

To test whether KoBERT and KoGPT-2 have 
learned syntactic representations, we use subject–
verb honorific agreement as a diagnostic via a 
classification task and self-attention analysis. 

3 Experiment  

3.1 Datasets 

The dataset included the sentence types illustrated 
in (4), along with matched ungrammatical 
counterparts in which the honorific verb appears 
with a structurally licit but non-honorifiable 
subject. We also varied the honorific features of 
structurally illicit potential subjects to test for 
interference. This yielded all four NP1–NP2 
feature combinations (H–H, H–NH, NH–H, NH–
NH) across both NP1- and NP2-control types. 
Since the embedded verb is always honorific, NP1-
control sentences require NP1 to be honorific, and 
NP2-control sentences require NP2—regardless of 
the other noun’s features. This design isolates 
structural understanding from lexical honorific 
effects. For clarity, sample sentences are shown in 
English in (5) and (6), although the study was run 
in Korean. Note that asterisks (*) indicate 
grammatical violations in Korean (Sohn, 2001), as 
summarized in Table 1. 

(5) NP1 control: The *kidi/teacheri told the 
teacher/kid that __i closed (honorific) the door. 

(6) NP2 control: The kid/teacher told the 
teacheri/*kidi __i to close (honorific) the door. 

32



 

Reflecting naturally occurring distributional 
patterns in Korean, the dataset contained 1,336 
NP1-control sentences and 5,304 NP2-control 
sentences, which were used for training and 
evaluation. We split the data into training (90%) 
and test (10%) sets.  

3.2 Classification task analysis 

Following previous studies (e.g., McCormick, 
2019; Vázquez, 2020; Wu, 2019), we implemented 
a binary classification task to evaluate whether the 
models could distinguish grammatically acceptable 
from unacceptable sentences based on honorific 
agreement. For KoBERT, we used standard 
embedding techniques: token, position, and 
segment embeddings (Devlin et al., 2019). Each 
sentence was tokenized using the KoBERT 
tokenizer, truncated or padded to a maximum 
length of 256 tokens. Tokens were indexed based 
on the KoBERT vocabulary. Segment embeddings 
were assigned as binary indicators (0 or 1) to 
distinguish between sentence segments. 
Grammaticality labels were stored separately for 
use in supervised training. Training parameters 
were set as follows: batch size = 16, number of 
epochs = 30, random seed = 42, maximum 
sequence length = 256, epsilon = 8e–8, and 
learning rate = 0.0001. We fine-tuned KoBERT 
(Jeon, Lee, and Park 2019) on our dataset using the 
BertForSequenceClassification class from 
Huggingface’s Transformers library (Wolf, 2019). 
Following training, we evaluated the model’s 
performance on previously unseen sentences from 
the test set. 

The KoGPT-2 training procedure followed a 
similar setup, with notable differences in input 
handling and model architecture. Unlike BERT, 
GPT-2 uses bytepair encoding (BPE) instead of 
WordPiece tokenization. In terms of training 
objectives, BERT is trained using masked language 
modeling and next-sentence prediction, whereas 
GPT-2 is trained using a causal (left-to-right) 
language modeling objective. Additionally, BERT 
processes input bidirectionally, while GPT-2 

processes text unidirectionally, from left to right, 
without relying on special [CLS] or [SEP] tokens. 
We used KoGPT-2-base-v2 (Jeon, 2021), 
implemented using the 
GPT2ForSequenceClassification and 
PreTrainedTokenizerFast classes from the 
Transformers library (Wolf, 2019). 

We fine-tuned both models for 30 epochs on the 
subject–verb honorific agreement dataset and 
evaluated their classification accuracy and 
attention alignment before and after training. This 
setup allowed us to assess their ability to generalize 
over syntax-sensitive dependencies and examine 
whether fine-tuning enhances syntactic sensitivity 
in low-resource settings. 

3.3 Attention patterns analysis 

Prior work has shown that attention maps in 
models like BERT can capture meaningful 
linguistic patterns (see Clark et al., 2019; DeRose, 
Wang, & Berger 2020; Vig, 2019; Park et al., 2019; 
for different views, see Jain &Wallace, 2019; 
Mohankumar et al., 2020; Serrano & Smith, 2019; 
Thorne et al., 2019). Thus, to investigate how the 
models represent syntactic dependencies in 
Korean, we conducted an attention analysis 
focusing on self-attention weights originating from 
the critical first verb (VERB1) in each sentence. 
This verb corresponds to the embedded predicate, 
where honorific agreement is morphologically 
marked by -si-. The goal of the analysis was to 
determine whether the model allocates greater 
attention to the syntactically appropriate subject—
either the main clause subject (NP1) in NP1-
control sentences or a structurally lower NP (NP2) 
in NP2-control sentences—when computing the 
contextual representation of VERB1. We extracted 
attention weights from VERB1 to the two potential 
subjects, NP1 and NP2. These values reflect the 
extent to which VERB1 attends to information 
provided by each NP, serving as an indirect 
measure of which constituents the model treats as 
syntactically or semantically relevant. 

Because KoBERT and KoGPT-2 differ in 
architecture and implementation, raw attention 
weights are not directly comparable across models. 
To allow for meaningful comparison, we analyzed 
normalized attention ratios, which capture the 
relative distribution of attention across potential 
antecedents (NP1 vs. NP2). Attention weights were 
extracted during the models’ evaluation of sentence 
grammaticality at both Epoch 1 (pre-trained) and 

Honorific features Control type 
NP1 NP2 NP1 NP2 

H H ✓ ✓ 
NH ✓ ✗ 

NH H ✗ ✓ 
NH ✗ ✗ 

Table 1:  Grammatical acceptability of dataset 
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Epoch 30 (fine-tuned). For each trial, we computed 
the attention ratio for NP1 as the proportion of 
attention allocated to NP1 relative to the total 
attention directed to NP1 and NP2 (i.e., NP1 Ratio 
= NP1 Attention / [NP1 Attention + NP2 Attention] 
× 100), and likewise for NP2. This normalized, 
directional metric allows us to assess attention 
patterns independently of differences in absolute 
attention scale. To quantify relative attentional 
preference, we then calculated an attention 
difference score for each trial by subtracting the 
NP2 ratio from the NP1 ratio (i.e., NP1 Ratio – 
NP2 Ratio). Accordingly, positive values indicate a 
preference for NP1, while negative values reflect 
greater attention to NP2.  

To explore how attention patterns relate to 
classification outcomes, we selected 400 sentences 
that were correctly classified by both models and 
56 that were misclassified by both. These subsets 
formed the basis of our attention analysis. 
Transformer models compute attention matrices 
over 12 layers and 12 heads based on tokenized 
inputs. Because tokenization significantly affects 
the model’s interpretation of sentence structure, it 
plays a critical role in attention analysis. In this 
study, we used a syllable-based tokenizer, which 
occasionally led to token splitting inconsistencies 
due to whitespace handling. To enhance 
interpretability while preserving the basic clause 
structure [NP1 NP2 VERB1 VERB2], we adopted 
a modified version of the method proposed by Mun 
and Shin (2025), as illustrated in Appendix A. 

3.4 Statistical analyses1 

Classification accuracy was analyzed using 
generalized linear mixed-effects models (GLMER) 
with a binomial link, implemented in R 4.2.1 (R 
Core Team, 2024) via the lme4 package (Bates et 
al., 2015, v1.1-31). P-values were computed using 
lmerTest (Kuznetsova, Brockhoff, & Christensen, 
2017, version 3.1-3). Attention data were analyzed 
using linear mixed-effects regression (LMER). 
Classification accuracy models included four fixed 
effects: Model (KoBERT vs. KoGPT-2), Control 
Type (NP1 vs. NP2), and the Honorific features of 
NP1 and NP2 (H vs. NH), along with all 
interactions. Attention models included Model, 
Control Type, and Classification Accuracy (correct 
vs. incorrect) as fixed effects. To evaluate the 

 
1 All data and analysis code are available at the following 
link: 

impact of fine-tuning on syntactic sensitivity, we 
compared Epoch 1 (pre-trained) and Epoch 30 
(fine-tuned) performance using models with 
Model, Epoch, and Control Type as predictors. All 
predictors were sum-coded. Random intercepts for 
sentence were included to account for trial-level 
variability. Random intercepts for sentence were 
included, and maximal random-effects structures 
(Barr et al., 2013) were simplified for convergence. 
Holm-adjusted pairwise comparisons were 
conducted using the emmeans package (Lenth, 
2024, v1.8.4-1). 

3.5 Results and Discussion 

Classification Accuracy Before and After Fine-
tuning (Epoch 1 vs. Epoch 30). Appendix B 
presents the grammatical acceptability 
classification accuracies for KoBERT and KoGPT-
2. Corresponding statistical results are in Appendix 
C. The analysis showed main effects of Model and 
Control Type: KoGPT-2 (M = 89.7%) significantly 
outperformed KoBERT (M = 81.1%), and NP2-
control sentences (M = 87.6%) were classified 
more accurately than NP1-control sentences (M = 
76.8%). Honorific features of NP1 and NP2 also 
had main effects, indicating sensitivity to subject–
verb honorific agreement. A significant Control 
Type × NP1 × NP2 interaction revealed that 
classification accuracy varied by agreement 
configuration. When agreement was disrupted by a 
feature-matching attractor—e.g., NP1-control with 
non-honorific NP1 and honorific NP2—accuracy 
dropped sharply (KoBERT: 45.3%; KoGPT-2: 
52.3%). In contrast, when the attractor did not 
linearly intervene—as in NP2-control with 
honorific NP1 and non-honorific NP2—KoGPT-2 
maintained high accuracy (92.4%), correctly 
identifying these sentences as ungrammatical, 
whereas KoBERT’s accuracy was substantially 
lower (76.7%). KoGPT-2 significantly 
outperformed KoBERT across conditions (ps 
< .03), except in NP1-control sentences with 
honorifiable NP1 and non-honorifiable NP2, where 
KoBERT (81.3%) outperformed KoGPT-2 (69.5%) 
(p < .0001). 

These findings suggest that language models’ 
performance declines with increasing agreement 
distance and feature-matching attractors that 
intervene in subject–verb dependencies (Bacon & 

https://osf.io/fw82j/?view_only=56b9d1dc865e453086dfbc
8957fee340 
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Regier, 2019; Ryu & Lewis, 2021; Lakretz et al., 
2022), paralleling patterns in human sentence 
processing (e.g., Kwon & Sturt 2016, 2019). The 
results were also consistent with previous studies 
showing that autoregressive models like GPT-2 are 
more robust to such interference and better at 
maintaining long-distance syntactic dependencies, 
whereas masked language models like BERT are 
more susceptible to feature-based interference 
from structurally irrelevant attractors (Chaves & 
Richter, 2021; Lasri, Lenci, & Poibeau, 2022). 

We next examined whether fine-tuning 
improves the models’ sensitivity to syntactic 
structure. Appendix D presents the classification 
accuracy of fine-tuned KoBERT and KoGPT-2, by 
control type and honorific features of NP1 and NP2. 
Appendix E presents the corresponding statistics, 
and Figure 1 visualizes aggregated results by 
model, epoch, and control type.  

Analysis revealed significant main effects of 
Model, Control type, and Epoch, indicating overall 
higher accuracy for KoGPT-2 (92.4%) than 
KoBERT (80.9%), and for NP2-control (88.5%) 
over NP1-control (79.3%) sentences. Accuracy 
also improved after fine-tuning (88.0%) compared 
to the pre-trained state (85.4%). These main effects 
were qualified by significant interactions, 
including Model × Control type and Epoch × 
Model and a three-way Model × Epoch × Control 
type interaction. Holm-adjusted pairwise 
comparisons showed that KoGPT-2 exhibited 
substantial gains after fine-tuning for both NP1-
control (z = −8.21, p < .001) and NP2-control 
sentences (z = −9.95, p < .001). In contrast, 
KoBERT showed no significant improvement for 
NP1-control (z = 1.20, p = .23) and even declined 
in NP2-control accuracy (z = 4.01, p < .001). 

During pre-training, both KoBERT and KoGPT-
2 exhibited high error rates when a feature-
matching attractor linearly intervened in subject–

verb honorific agreement (i.e., NP1-control 
sentences with a non-honorifiable NP1 and an 
honorifiable NP2). After fine-tuning, both models 
showed improved classification accuracy for this 
construction (KoBERT: 45.3% → 61.8%; KoGPT-
2: 52.4% → 72.8%). To evaluate whether fine-
tuning reduced attractor interference, we 
conducted a follow-up analysis. Focusing on NP1-
control sentences, we compared conditions in 
which the honorific features of NP1 and NP2 
differed (H–NH and NH–H) to those in which they 
matched (H–H and NH–NH). If models adhered 
strictly to syntactic structure, performance should 
be unaffected by the features of an illicit subject. 
However, Welch’s two-sample t-tests revealed that 
mismatched conditions significantly reduced 
classification accuracy for both models: H–NH vs. 
H–H (KoBERT: t(1089.3) = 5.60, p < .001; 
KoGPT-2: t(679.16) = 10.87, p < .001), and NH–H 
vs. NH–NH (KoBERT: t(1075.9) = −6.57, p < .001; 
KoGPT-2: t(635.37) = −14.25, p < .001). These 
findings suggest that although fine-tuning 
substantially improved KoGPT-2’s overall 
accuracy and structural sensitivity, both models 
remain vulnerable to honorific feature interference 
in structurally complex NP1-control configurations. 

Overall, the results suggest that KoGPT-2 
benefits substantially from fine-tuning, showing 
improved classification accuracy across both 
control types. In contrast, KoBERT appears less 
responsive to fine-tuning and even declined in 
NP2-control performance. This divergence may 
reflect architectural differences in how the two 
models encode syntactic dependencies, with 
KoGPT-2’s autoregressive design better supporting 
structural sensitivity. Nonetheless, both models 
remain vulnerable to honorific feature interference, 
especially in NP1-control sentences where 
structurally irrelevant NPs disrupt subject–verb 
agreement. 

To further examine how syntactic information is 
internally represented, we next analyze the models’ 
attention patterns during the classification task. 

Attention Patterns Before and After Fine-Tuning 
(Epoch 1 vs. Epoch 30). The attention analysis 
included 456 trials from the classification task that 
were either correctly (n = 400) or incorrectly (n = 
56) classified by both models. This set comprised 
104 NP1-control and 352 NP2-control sentences. 
By comparing correct and incorrect classifications, 
we aimed to explore how attention patterns relate 
to model performance and to identify structurally 

 
Figure 1. Classification accuracy aggregated across 
honorific conditions, grouped by model, control 
type, and training state (pre-trained vs. fine-tuned: 
Epoch 1 vs. Epoch 30) 
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relevant attention cues that may support accurate 
classification. 

Because absolute attention weights vary 
between GPT-2 and BERT due to differences in 
architecture and implementation, we focused on 
relative attention distributions. Specifically, we 
analyzed preference attention ratios, which 
quantify how attention is distributed between NP1 
and NP2, independent of model scale (see Section 
3.3). In our analysis, positive values indicate a 
preference for NP1, while negative values reflect 
greater attention to NP2. Accordingly, under this 
metric, a structurally aligned model should yield 
more positive scores for NP1-control sentences and 
more negative scores for NP2-control sentences.  

Figure 2 presents the attention difference scores 
by model and classification accuracy for pre-
trained KoBERT and KoGPT-2. The statistical 
analysis results are presented in Appendix F.  

The analysis revealed significant main effects of 
Model and Classification Accuracy: KoGPT-2 had 
higher attention difference scores (M = 76.8, SE = 
0.55) than KoBERT (M = −1.6, SE = 1.48), 
suggesting that KoGPT-2 allocated more attention 
to NP1 than KoBERT. Correct trials also yielded 
higher scores (M = 38.7, SE = 2.84) than incorrect 
ones (M = 0.29, SE = 8.89). These main effects 
were moderated by significant interactions: Model 
× Classification accuracy and Model × Control 
type. Holm-corrected pairwise comparisons 
indicated that KoBERT allocated more attention to 
NP2 in incorrect trials than in correct ones (t(192) 
= −4.45, p < .0001), whereas KoGPT-2 did not 
show a comparable difference (t(192) = 0.45, n.s.). 
In addition, KoGPT-2 allocated more attention to 
NP1 in NP2-control than NP1-control sentences 
(t(192) = −1.97, p = .05). In contrast, KoBERT did 
not exhibit such an asymmetry (t(192) = 0.90, n.s.). 

These findings suggest that, in the pre-trained 
state, attention allocation patterns do not 
consistently reflect syntactic roles, despite decent 

classification accuracy. KoGPT-2 directed 
significantly more attention to NP1 in NP2-control 
sentences, where NP2 is the syntactically 
appropriate subject. This indicates a misalignment 
between attention and the underlying grammatical 
dependencies. KoBERT’s attention favored NP2 in 
incorrect trials, likely reflecting interference rather 
than accurate subject identification. Overall, these 
results highlight that attention distributions in pre-
trained models may not consistently indicate 
syntactic understanding.  This aligns with prior 
work demonstrating weak links between attention 
weights and model performance or reasoning 
processes (Jain & Wallace, 2019; Serrano & Smith, 
2019; Mohankumar, 2020; Thorne et al., 2019).   

Having established baseline attention patterns in 
the pre-trained models, we next examined how 
fine-tuning affected attention allocation in 
KoBERT and KoGPT-2. Using the same statistical 
models, we evaluated whether fine-tuning 
improved the alignment between attention and 
syntactic roles. Figure 3 presents the attention 
difference scores (NP1 – NP2) by model, 
classification accuracy, and control type for the 
fine-tuned models. The corresponding statistical 
analysis results are shown in Appendix G.  

The analysis revealed significant main effects of 
Model and Classification accuracy. KoGPT-2 
showed lower attention difference scores (M = 
−41.9, SE = 3.65) than KoBERT (M = 0.95, SE = 
1.91), and correctly classified trials yielded higher 
scores (M = −19.9, SE = 2.72) than incorrectly 
classified ones (M = −24.3, SE = 6.11). A 
significant main effect of Control type also 
emerged, with NP1-control sentences eliciting 
higher scores (M = −1.69, SE = 5.56) than NP2-
control sentences (M = −26.1, SE = 2.66). These 
main effects were qualified by significant 
interactions: Model × Control type, Model × 
Classification accuracy, Control type × 

 
Figure 2. Attention difference scores by model and 
classification accuracy for KoBERT and KoGPT-2 
in their pre-trained states. 

 
Figure 3. Attention difference scores by model and 
classification accuracy for fine-tuned KoBERT and 
KoGPT-2 

36



 

Classification accuracy, and a three-way 
interaction of Model × Control type × 
Classification accuracy. Holm-corrected 
comparisons showed that KoGPT-2 allocated 
significantly more attention to NP1—the correct 
subject—in correctly classified NP1-control 
sentences than in incorrect ones (t = −6.40, p 
< .0001), indicating greater syntactic alignment. 
No such effect was observed for KoGPT-2 in NP2-
control sentences (t = −0.27, p = .789) or for 
KoBERT in either condition (ps > .78). 

These results after fine-tuning shed light on the 
interpretability of attention in Transformer models, 
particularly regarding their sensitivity to syntactic 
roles. The significant three-way interaction among 
model type, control type, and classification 
accuracy suggests that attention allocation is not 
uniformly predictive of classification performance 
but is modulated by both structural configuration 
and model architecture. Notably, KoGPT-2 showed 
a strong link between attention and classification 
accuracy in NP1-control sentences after fine-
tuning, suggesting improved syntactic alignment. 
This effect was absent in NP2-control sentences, 
likely due to the small number of classification 
errors (n = 6), which limited statistical power. In 
contrast, KoBERT’s attention was unaffected by 
classification accuracy following fine-tuning, 
aligning with its limited performance gains during 
training. This suggests that KoBERT’s attention 
patterns may be less sensitive to syntactic structure 
or more weakly coupled with task success, echoing 
previous findings that attention weights do not 
always reflect meaningful model behavior (Jain & 
Wallace, 2019; Serrano & Smith, 2019; 
Mohankumar, 2020; Thorne et al., 2019). 

Taken together, these findings highlight the 
importance of evaluating attention behavior in 
relation to both model architecture and syntactic 
structure. They also caution against interpreting 
attention weights as direct indicators of linguistic 
competence: while attention can reflect syntactic 
alignment in some cases, this is not a reliable 
property across models or sentence types. 
KoBERT’s lack of attention modulation despite 
high classification accuracy raises questions about 
the interpretability of attention in masked language 
models. We return to this issue in the general 
discussion. 

4 General Discussion and Conclusion 

This study aimed to investigate whether 
Transformer-based language models can encode 
abstract syntactic structures, even in the absence of 
an explicit layer dedicated to syntactic 
representation. We addressed this question using 
Korean, a low-resource language that differs 
typologically from widely studied English, by 
examining model behavior through the lens of 
subject–verb honorific agreement. Although 
honorifics may appear socio-pragmatic in nature, 
the use of the honorific suffix -si- requires a 
licensing subject with matching features in a 
structurally appropriate position. Accordingly, -si- 
honorific agreement provides a unique testing 
ground for evaluating whether language models 
can acquire abstract syntactic dependencies in the 
absence of categorical surface cues. To this end, we 
employed both a grammaticality classification task 
and a self-attention analysis to evaluate the 
performance of two Korean-language models, 
KoBERT and KoGPT-2, in both their pre-trained 
states and after fine-tuning (i.e., before and after 
exposure to honorific agreement patterns in 
Korean). The training and classification datasets 
included sentences featuring subject–verb 
honorific agreement that varied in control type and 
in the honorific features of the potential subject 
NPs. 

Our results offer three key contributions to the 
study of syntactic generalization in neural language 
models. First, although both models achieved 
relatively strong classification performance—
suggesting some degree of syntactic understanding 
consistent with prior work (Clark et al., 2019; 
Hewitt & Manning, 2019; Lin, Tan, & Frank, 
2019)—KoGPT-2 consistently outperformed 
KoBERT and responded more robustly to fine-
tuning (Chaves & Richter, 2021). Even in their pre-
trained states, KoGPT-2 generally outperformed 
KoBERT. While KoBERT showed only modest 
gains—or even declines—in performance after 
fine-tuning, KoGPT-2 improved significantly 
across both NP1- and NP2-control conditions. Both 
models struggled with attractor interference, but 
KoBERT appeared especially susceptible. In the 
syntactically complex NP1-control condition—
where the attractor NP2 linearly intervenes 
between the subject (NP1) and the verb—
KoBERT’s pre-trained accuracy was only 45.3%, 
compared to 52.4% for KoGPT-2. After fine-tuning, 
KoGPT-2’s performance rose to 72.8%, while 
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KoBERT reached only 61.8%. These findings 
support prior claims that autoregressive models 
like GPT-2 are better equipped to track hierarchical 
dependencies than masked language models like 
BERT (Chaves & Richter, 2021; Lasri, Lenci, & 
Poibeau, 2022). In contrast, BERT may rely more 
heavily on shallow heuristics, rendering it more 
susceptible to lexical interference (McCoy, Pavlick, 
& Linzen, 2019). Importantly, our use of a low-
resource language extends these insights beyond 
high-resource settings yielding critical evidence 
about models’ capacity to generalize over abstract 
syntactic structure. 

Second, our attention analyses contribute 
empirical evidence to the ongoing debate about the 
interpretability of attention mechanisms in 
Transformer-based models. Specifically, our 
results support previous claims that attention 
weights do not reliably correspond to linguistic 
explanations (Jain & Wallace, 2019; Serrano & 
Smith, 2019; Mohankumar, 2020; Thorne et al., 
2019; Zhao et al., 2024) even though alignment 
does emerge in some cases. For KoGPT-2, fine-
tuning led to greater alignment between attention 
allocation and syntactic roles, but only under 
specific conditions. In correctly classified NP1-
control sentences, KoGPT-2 consistently directed 
greater attention to NP1, the structurally 
appropriate subject. In contrast, in misclassified 
NP1-control trials, attention shifted toward NP2, 
suggesting that syntactically guided attention 
supports successful classification. However, this 
relationship is not guaranteed. For instance, 
KoBERT showed no such modulation: its attention 
patterns remained largely insensitive to syntactic 
structure or classification outcome. Notably, 
KoBERT’s classification accuracy plateaued 
across training (∼81%) and even declined in 
certain conditions after finetuning—mirroring its 
lack of syntactic alignment in attention, despite 
relatively strong overall performance. These results 
reinforce growing concerns that attention weights, 
while useful in some contexts, may not consistently 
reflect underlying grammatical knowledge or task-
relevant reasoning. They also underscore the 
importance of jointly evaluating both model 
performance and internal interpretability when 
assessing syntactic generalization in neural 
language models (Jain and Wallace 2019). 

Third, our results underscore the utility of 
Korean honorific agreement as a rigorous 
diagnostic for evaluating syntactic sensitivity in 

language models. Unlike number agreement in 
English, Korean subject–verb honorific agreement 
is governed by structural licensing conditions that 
are not always transparent at the surface level. The 
optionality and morphosyntactic specificity of -si- 
honorific agreement allow researchers to probe 
whether models can move beyond surface-level 
lexical heuristics and encode deeper grammatical 
generalizations. On the other hand, the fact that 
both KoBERT and KoGPT-2 remained susceptible 
to interference from honorific attractors even after 
finetuning suggests that fully abstracting over 
syntactic structure—particularly in constructions 
involving long-distance dependencies and feature 
checking—remains a significant challenge for 
current Transformer architectures. 

Taken together, our findings demonstrate that 
Transformer-based language models can acquire 
sensitivity to morphosyntactic dependencies, even 
when these dependencies are tied to socio-
pragmatic cues such as honorifics. While both 
models performed reasonably well in their pre-
trained states, fine-tuning—especially for KoGPT-
2—led to notable improvements in classification 
accuracy and more syntactically aligned attention 
patterns in structurally complex sentences. 
However, these gains were not uniform. KoGPT-
2’s attention aligned with syntactic roles only under 
certain conditions, and KoBERT showed little 
evidence of syntactically guided attention despite 
moderate classification accuracy. 

These results underscore the limits of using 
attention as indicators of grammatical knowledge. 
Attention may sometimes reflect syntactic 
reasoning, but it does not reliably track structural 
representations across models or constructions 
(Jain & Wallace, 2019; Serrano & Smith, 2019; 
Mohankumar, 2020; Thorne et al., 2019). This 
study underscores the value of cross-linguistic 
research, especially with low-resource languages 
like Korean, whose rich morphology and flexible 
word order can reveal model limitations obscured 
in English-centric evaluations (cf. Chang & Bergen, 
2024; Wu & Dredze, 2020).  

At the same time, it is important to acknowledge 
certain limitations of our study. In particular, our 
analysis did not fully address how implementation 
details might have influenced the results. Factors 
such as tokenization (e.g., the proportion of [UNK] 
tokens), differences in model size (KoBERT and 
KoGPT-2 differ not only in inference type but also 
in parameter scale), and the characteristics of the 
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pretraining corpora (e.g., written vs. spoken 
language styles) could all have contributed to the 
observed outcomes. To minimize potential 
confounds, all test sentences were lexically 
matched across the experimental conditions, with 
the only differences arising from the honorific 
features that served as the manipulation. This 
design should therefore reduce the likelihood that 
other sentence components drove the observed 
effects. Nevertheless, we cannot fully exclude this 
possibility, particularly given differences in the 
models’ pretraining corpora. 

Future research should explore whether 
incorporating explicit syntactic supervision or 
inductive biases—such as training on treebank-
annotated corpora or employing structure-aware 
architectures—enhances models’ ability to 
generalize robustly and yields more interpretable 
internal representations, especially across 
typologically diverse languages. 
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Appendices 

Appendix A. N/V unit treatment and attention 
transformation (Example (5)) 
 

 

Appendix B. Classification accuracy results for 
pre-trained KoBERT and KoGPT-2 on target 
sentences involving subject–verb honorific 
agreement. Results are grouped by the honorific 
features of the two potential subject NPs (NP1 and 
NP2) and by sentence control type (NP1-control 
vs. NP2-control). 

KoBERT 
NP1 NP2 NP1 ctrl NP2 ctrl Mean 

H H 89.1 (0.01) 86.5 (0.01) 
81.2 

(0.01) 
NH 81.3 (0.02) 76.8 (0.01) 

NH H 45.3 (0.02) 82.8 (0.01) 
NH 84.2 (0.02) 84.6 (0.01) 

KoGPT2 
NP1 NP2 NP1 ctrl NP2 ctrl Mean 

H H 93 (0.01) 94.3 (0.01) 
89.8 

(0.01) 
NH 69.5 (0.02) 92.5 (0.01) 

NH H 52.4 (0.02) 86.6 (0.01) 
NH 98.4 (0.01) 97 (0.01) 

 

Appendix C. Linear Mixed Effects model results 
for classification accuracy by pre-trained KoBERT 
and KoGPT-2. Coefficients, standard errors, z-
values, and p-values are reported for main effects 
and their interactions. The model included random 
intercepts for sentence. Whether a random slope 
was included for each effect is not shown here but 
was considered in model fitting. 

 Estimate SE z p 
(Intercept) 2.281 0.05 45.43 .001 
NP1 0.153 0.04 3.95 .001 
NP2 -0.176 0.05 -3.51 .001 

Model -0.481 0.04 -
12.86 .001 

Control type -0.377 0.04 -9.86 .001 
NP1:NP2 0.821 0.04 21.16 .001 
NP1:Model 0.176 0.04 4.75 .001 
NP2:Model 0.159 0.04 4.27 .001 
NP1:Type 0.173 0.04 4.53 .001 
NP2:Type -0.249 0.04 -6.53 .001 
Model:Type 0.131 0.04 3.52 .001 
NP1:NP2: 
Model -0.285 0.04 -7.67 .001 

NP1:NP2: 
Type 0.446 0.04 11.71 .001 

NP1:Model:
Type 0.223 0.04 5.98 .001 

NP2:Model:
Type -0.067 0.04 -1.8 0.08 

NP1:NP2: 
Model:Type -0.145 0.04 -3.91 .001 
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Appendix D. Classification accuracy results for 
fine-tuned KoBERT and KoGPT-2 on target 
sentences involving subject–verb honorific 
agreement. Results are grouped by the honorific 
features of the two potential subject NPs (NP1 and 
NP2) and by sentence control type 

 
KoBERT 
NP1 NP2 NP1 ctrl NP2 ctrl Mean 

H H 86.5 (0.01) 86.1 (0.01) 
80.8 

(0.01) 
 

NH 74.1 (0.02) 79.2 (0.01) 
NH H 61.8 (0.02) 84.4 (0.01) 

NH 79.6 (0.02) 78.5 (0.01) 
KoGPT2 
NP1 NP2 NP1 ctrl NP2 ctrl Mean 

H H 98.4 (0.01) 98.8 (0.01) 
95.1 

(0.01) 
NH 79.6 (0.02) 97.1 (0.01) 

NH H 72.8 (0.02) 94.4 (0.01) 
NH 99.4 (0.01) 97.8 (0.01) 

 

Appendix E. Linear mixed-effects model results 
for classification accuracy of KoBERT and 
KoGPT-2 before and after fine-tuning (Epoch 1 vs. 
Epoch 30). Coefficients, standard errors, z and p-
values are reported for the main effects, as well as 
for their interactions. Whether a random slope was 
included for each effect is not shown here but was 
considered in model fitting. 

 
 Estimate SE z p < 
(Intercept) 3.807 0.1 37.56 .001 
Epoch 0.725 0.08 8.76 .001 
Model -2.182 0.1 -21.8 .001 
Control type -0.582 0.05 -11.46 .001 
Epoch:Model -0.905 0.08 -10.9 .001 
Epoch:Type -0.056 0.05 -1.08 0.29 
Model:Type 0.321 0.05 6.33 .001 
Epoch:Type 0.127 0.05 2.46 0.02 

 

Appendix F. Linear mixed-effects model results for 
attention difference scores in the pre-trained state. 
Coefficients, standard errors, t-values, and p-values 
are reported for the main effects and their 
interactions. Whether a random slope was included 
for each effect is not shown here but was 
considered in model fitting. 

 Estimate SE t p < 
(Intercept) 35.625 1.66 21.41 .001 
Model -41.555 1.12 -37.2 .001 
Control type -1.07 1.66 -0.64 0.52 
Classification 
accuracy -4.005 1.66 -2.41 0.02 

Model:Type 2.881 1.12 2.58 0.02 
Model: 
Accuracy -4.922 1.12 -4.41 .001 

Type: 
Accuracy -2.368 1.66 -1.42 0.16 

Model:Type:
Accuracy 0.285 1.12 0.26 0.8 

Appendix G. Linear mixed-effects model results 
for attention difference scores in the fine-tuned 
state. Coefficients, standard errors, t-values, and p-
values are reported for the main effects and their 
interactions. Whether a random slope was included 
for each effect is not shown here but was 
considered in model fitting. 

 Estimate SE t p < 
(Intercept) -15.72 3.54 -4.45 .001 
Model 15.91 2.75 5.79 .001 
Control type 11.13 3.54 3.15 0.01 
Classification 
accuracy -9.81 3.54 -2.78 0.01 

Model: 
Control type -12.64 2.75 -4.6 .001 

Model: 
Accuracy 7.24 2.75 2.63 0.01 

Type: 
Accuracy -8.99 3.54 -2.54 0.02 

Model:Type:
Accuracy 6.08 2.75 2.21 0.03 
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