

Non-English Code Generation with Cross-Lingual Chain of
Thought

Yuha Nishigata, Waka Ito, Kimio Kuramitsu

Proceedings of the 39th Pacific Asia Conference on
Language, Information and Computation (PACLIC 39)

Emmanuele Chersoni, Jong-Bok Kim (eds.)

2025

© 2025. Yuha Nishigata, Waka Ito, Kimio Kuramitsu. Non-English Code Generation with Cross-
Lingual Chain of Thought. In Emmanuele Chersoni, Jong-Bok Kim (eds.), Proceedings of the 39th
Pacific Asia Conference on Language, Information and Computation (PACLIC 39), 443-451.
Institute for the Study of Language and Information, Kyung Hee University. This work is licensed
under the Creative Commons Attribution 4.0 International License.

Non-English Code Generation with Cross-Lingual Chain of Thought

Yuha Nishigata
Japan Women’s University

Tokyo, Japan
m2116061ny@ug.jwu.ac.jp

Waka Ito
Japan Women’s University

Tokyo, Japan
m2016013iw@ug.jwu.ac.jp

Kimio Kuramitsu
Japan Women’s University

Tokyo, Japan
kuramitsuk@fc.jwu.ac.jp

Abstract

Large language models (LLMs) that support
multiple languages are becoming increasingly
important. A key challenge in building such
models is the performance gap between English
and non-English languages, largely caused by
the imbalance of pre-training data across lan-
guages.

We introduce Cross-Lingual Chain-of-Thought
(CL-CoT), a fine-tuning approach designed
to improve code generation in low-resource
languages through cross-lingual transfer. CL-
CoT works by adding English chain-of-thought
prompts to instruction texts in low-resource
languages, such as Japanese, encouraging the
model to reason in English while generating
code.

We evaluated CL-CoT on code generation tasks
in three low-resource languages. Our method
outperformed conventional approaches in most
cases, indicating that CL-CoT effectively pro-
motes cross-lingual transfer.

1 Introduction

Large language models (LLMs) have become foun-
dational components of modern information sys-
tems. For widespread adoption and practical im-
plementation, users must be able to utilize LLMs
smoothly in their native languages. However, devel-
oping LLMs that operate effectively in non-English
languages presents significant challenges.

The fundamental cause is the imbalance of lan-
guage resources in pre-training datasets (Li et al.,
2025; Zhang et al., 2024).LLM pre-training relies
heavily on web text data, which is predominantly
English(Penedo et al., 2025). This tendency is par-
ticularly pronounced in specialized domains such
as engineering and medicine (Zhao et al., 2024).

Cross-lingual transfer has attracted attention as
one approach to address this challenge. Cross-
lingual transfer refers to transferring knowledge
acquired through learning in a specific language

to another language (Wu and Dredze, 2019). In
particular, by transferring knowledge from high-
resource languages such as English to low-resource
languages such as Japanese, performance improve-
ments can be expected for instructions in low-
resource languages (Xu et al., 2025). However,
many aspects of the mechanisms underlying cross-
lingual transfer remain unclear.

We propose Cross-Lingual Chain-of-Thought
(CL-CoT), an instruction tuning method based on
the internal translation hypothesis. This hypoth-
esis suggests that LLMs internally perform rea-
soning in English when processing non-English
instructions(Schut et al., 2025). CL-CoT aims to
promote cross-lingual transfer by explicitly encour-
aging English-based reasoning.

In this study, we evaluated the effectiveness of
CL-CoT in promoting cross-lingual transfer using
code generation tasks. Code generation has been
reported to significantly improve programming ef-
ficiency and reduce the burden on developers (Par-
adis et al., 2024). If we consider programming
languages as a type of language, code generation
can be viewed as a translation task from natural lan-
guage to code. However, what distinguishes code
generation from translation tasks is that established
methods exist for quantitatively evaluating the cor-
rectness of generated code(Chen et al., 2021).

In code generation tasks, it is known that sig-
nificant performance gaps exist between instruc-
tions in English and instructions in low-resource
languages (Li et al., 2024; Sato et al., 2024). Ad-
ditionally, since the output is quantitatively evalu-
able code, this is a task that enables the analysis
of cross-lingual transfer. In this paper, we ana-
lyze cross-lingual transfer in code generation not
only between English and Japanese, which we have
previously investigated, but also with other Asian
languages (Vietnamese and Korean) to verify the
general applicability of CL-CoT.

The remainder of this paper is organized as fol-

443

lows. Section 2 defines the problem regarding lan-
guage resource quantity and cross-lingual perfor-
mance gaps, and explains why we focused on cross-
lingual transfer and internal translation. Section 3
proposes the CL-CoT method. Section 4 reports
the evaluation of code generation performance us-
ing the CL-CoT method. Section 5 summarizes
related work, and finally, Section 6 concludes this
research.

2 Background

In this section, we describe code generation tasks,
language resource imbalances, and cross-lingual
transfer methods that inform our approach.

2.1 Code Generation

Code generation converts natural language instruc-
tions into executable code (Jiang et al., 2024). Sim-
ilar to machine translation, it involves converting
natural language descriptions into another represen-
tation system (programming languages). However,
generating code requires understanding the intent
behind natural language descriptions and producing
algorithmic solutions. Therefore, code generation
tasks serve as a testbed for fundamental NLP ca-
pabilities such as compositional understanding and
abstract reasoning.

Code generation tasks have robust semantic eval-
uation metrics that directly measure whether a
model truly understands and solves given prob-
lems.

Traditional evaluation metrics like BLEU scores
often have low correlation with human judgment,
making objective assessment challenging. Code
generation tasks address this limitation by enabling
robust semantic evaluation through execution-
based metrics such as Pass@k (Chen et al., 2021),
providing clear, quantitative performance evalua-
tion independent of subjective interpretation.

2.2 Language Resources

Code generation faces significant language re-
source imbalances. The latest information sources
about code are disseminated through documenta-
tion, tutorials, and academic papers written in En-
glish. Additionally, discussions about code im-
plementation methods and error resolution are pri-
marily conducted in English on developer-oriented
platforms such as GitHub and Stack Overflow. Ac-
cording to Kocetkov et al. (2022), in The Stack, one
of the code datasets used for pre-training, 94% of

English:94%

Japanese: Less than 1%
Languages other than English: approx. 6%

Figure 1: Language distribution of code comments in
The Stack dataset as a percentage-based pie chart.

code comments are written in English as shown in
Figure 1, with the proportion of low-resource lan-
guages being extremely limited. Given this back-
ground, English is the only high-resource language,
while many languages including Chinese are con-
sidered as low-resource languages.

The imbalance in language resource quantity
also affects actual code generation performance,
and clear performance differences have been con-
firmed between instructions in English and non-
English languages. In a study by Wang et al. (2024),
a comparison of code generation performance for
instructions in English and Chinese showed that
performance decreased by more than 13% for Chi-
nese instructions. The study identified the lack of
language resources for non-English languages as
the primary factor behind this performance degra-
dation.

2.3 Cross-Lingual Transfer

Cross-lingual transfer enables knowledge learned
in one language to be utilized in another language
(Wu and Dredze, 2019). It has attracted attention as
a means to resolve language resource imbalances
and cross-lingual performance gaps. In code gen-
eration, utilizing knowledge acquired in English
enables efficient performance improvements even
for instructions in low-resource languages.

The underlying principles and mechanisms of
cross-lingual transfer remain unclear. The internal
translation hypothesis suggests that when LLMs re-
ceive instructions in languages other than English,
they internally translate the instructions into En-
glish and then generate responses using knowledge
learned in English (Wendler et al., 2024; Schut
et al., 2025). We focus on an instruction tuning
method based on the internal translation hypothesis
to promote cross-lingual transfer.

444

3 Proposed Method

In this section, we describe existing instruction
tuning methods and our proposed method, CL-
CoT. Figure 2 shows an overview of the proposed
method using Japanese as an example.

3.1 Instruction Tuning

Instruction tuning is supervised fine-tuning using
paired data consisting of instruction texts and corre-
sponding outputs, enabling LLMs to follow given
instructions (Wei et al., 2021).

A key characteristic is that effective improve-
ments can be achieved with far less training data
compared to pre-training (Zhou et al., 2023).

Below is an example of instruction tuning data
in Japanese:

Instruction� �
2つの数の乗算を計算する関数をかきな
さい．� �
Output� �
def calculate_multiple(a, b):

return a * b� �
Multilingual LLMs are created by composing

instruction texts in target languages (Wang et al.,
2024) and applying tuning. However, adding in-
struction texts in multiple languages can cause
catastrophic forgetting (Fujii et al., 2024), leading
to performance degradation in certain languages.

3.2 Para-lingual SFT

Sato et al. proposed Para-lingual supervised
fine-tuning with parallel instruction texts in high-
resource and low-resource languages to promote
cross-lingual transfer (Sato et al., 2025). We re-
fer to this approach as Para SFT. For convenience,
we refer to the conventional monolingual SFT as
Mono SFT.

Below is an example of Para SFT when Japanese
is the low-resource language:

Instruction� �
2つの数の乗算を計算する関数をかきな
さい．
Write a function that calculates the multiplica-
tion of two numbers.� �

Output� �
def calculate_multiple(a, b):

return a * b� �
Para SFT is based on the internal translation

hypothesis. By providing instructions in the order
of low-resource language followed by English, Para
SFT implicitly encourages translation from the low-
resource language to English, and further expects
code generation utilizing English knowledge.

3.3 Cross-Lingual Chain-of-Thought

Para SFT implicitly encourages switching from
low-resource languages to English through parallel
translation. In contrast, we propose Cross-Lingual
Chain-of-Thought (CL-CoT), which explicitly pro-
motes cross-lingual transfer by adding Chain-of-
Thought(CoT) instruction text that induces reason-
ing.

The CoT instruction text is a cross-lingual trans-
fer version of the CoT prompt (“Let’s think step by
step”): “Let’s think the instruction in English.”

Below is an example of CL-CoT for a low-
resource language. The part enclosed by <reason>
</reason> tags is the CoT instruction text.

Instruction� �
2つの数の乗算を計算する関数をかきな
さい．
<reason>
Let’s think the instruction in English.
</reason>� �
Output� �
def calculate_multiple(a, b):

return a * b� �
4 Experiments

This section reports on the effectiveness of the CL-
CoT proposed in the previous section. The purpose
of this experiment is to verify whether CL-CoT is
effective in promoting cross-lingual transfer and
improving code generation performance in low-
resource languages.

4.1 Experimental Settings

4.1.1 Target Languages
We selected Japanese, Vietnamese, and Korean as
target low-resource languages. According to the
analysis of The Stack pre-training corpus by Ko-
cetkov et al. (2022), natural-language descriptions

445

Instruction Data

EN

Translation

JA

Instruction(JA)Instruction
Letʼs think the instruction in English.

CodeOutput

Cross-Lingual CoT (CL-CoT)

Instruction Tuning

EN JA

Knowledge transfer
Instruction Tuning Method

def f(a: str) -> int:
"""
この関数は⽂字列を⼊⼒として受け取

り、その⽂字列に含まれるユニークな⽂
字の数を返します。

⽂字の⼤⽂字と⼩⽂字は区別しません。
"""

Input(JA)

⽂字列を⼩⽂字に変換して、重複
を取り除いた⽂字の集合を作成

unique_chars = set(a.lower())

集合の⻑さを返す
return len(unique_chars)

Generation results(Py)

LLM

Figure 2: Overview of Cross-Lingual Chain-of-Thought (CL-CoT) instruction tuning method with Japanese input
example.

account for less than 1 % in Japanese and Korean,
while Vietnamese is not included at all. These lan-
guages are therefore well suited to evaluating the
effectiveness of instruction tuning in low-resource
settings.

4.1.2 Instruction Tuning Methods for
Comparison

We investigated the instruction tuning methods de-
scribed in Section3.

1. Mono SFT: Standard instruction tuning
method that uses only instruction texts in the
low-resource language.

2. Para SFT: A method where parallel instruc-
tion texts are arranged in the order of low-
resource language followed by English.

3. CL-CoT: A method where a CoT prompt that
encourages reasoning in English is added af-
ter the instruction text in the low-resource lan-
guage.

4.1.3 Instruction Tuning Dataset
We created our dataset using the educa-
tional_instruct dataset1 from the OpenCoder
project:

1. From the 118,278 samples in the educa-
tional_instruct dataset, extract the top 1,000

1OpenCoder-LLM/opc-sft-stage2

English instruction–code pairs, sorted in de-
scending order of instruction length.

2. For the above English instruction texts, we
machine-translated them into low-resource
languages using the DeepL API2. The code
was used as-is without translation.

High-quality machine translation is crucial for
multilingual LLM development.

Following Zhou et al. (2023), we adopt a sample
size of 1,000 pairs, which has been shown effective
for instruction tuning experiments.

We compared several translation services by
translating a subset of instruction data and check-
ing for errors and omissions. Based on translation
fidelity and proven performance in previous multi-
lingual LLM projects, we selected DeepL.

4.1.4 Target LLMs for Evaluation
We evaluated three LLMs with different pre-
training data compositions:

• meta-llama/Meta-Llama-3-8B: A model de-
veloped by Meta, pre-trained on over 15 tril-
lion tokens of data primarily in English.

• Qwen/Qwen2.5-7B: A model developed by
Alibaba that supports multilingual generation.
This model is pre-trained on 18 trillion tokens

2https://www.deepl.com

446

https://www.deepl.com

of multilingual data, and the officially sup-
ported languages include English, Japanese,
Vietnamese, and Korean.

• infly/OpenCoder-8B-Base: A code-
specialized model jointly developed by
INF Technology and M-A-P. This model
is pre-trained on 2.5 trillion tokens with a
composition ratio of 9:1 between code and
code-related web data.

We performed instruction tuning on these mod-
els using the entire English dataset from educa-
tional_instruct to create baseline models. This
baseline served to improve English code generation
performance under the same conditions and subse-
quently examine cross-lingual transfer capabilities.

4.1.5 Evaluation Method
We evaluated code generation performance for low-
resource languages using CL-HumanEval (Sato
et al., 2024), which is based on HumanEval (Chen
et al., 2021). The benchmark includes English,
Japanese, Vietnamese, and Korean, with 164 prob-
lems provided for each language. CL-HumanEval
differs from the original HumanEval in two main
ways. First, CL-HumanEval replaces English-
derived function and variable names with language-
independent identifiers. Second, this benchmark
removes hints such as code execution examples.
We used Pass@1 as the evaluation metric. Similar
to HumanEval, this metric indicates whether the
model can generate correct code when generating
a single code sample.

4.2 Experimental results
Table 1 reports Pass@1 scores for the three instruc-
tion tuning methods across three LLMs. The high-
est score for each model–language pair is high-
lighted in bold. CL-CoT achieved the highest
scores in most combinations, outperforming the
baseline in seven out of nine combinations of three
models and three low-resource languages. Our
results show that the proposed method, CL-CoT,
improves code generation performance for low-
resource languages.

In contrast, Para SFT underperformed the base-
line in four of the nine model–language com-
binations. Furthermore, CL-CoT matched or
outperformed Mono SFT in six of the nine
model–language combinations.

These results suggest that instruction tuning
methods that explicitly encourages reasoning in

English are effective in promoting cross-lingual
transfer.

4.2.1 Performance Changes by Instruction
Tuning Data Size

Based on the previous section’s results, we investi-
gated how the size of instruction tuning data affects
performance. Figure 3 shows the evaluation results
for Japanese with data sizes of 1,000, 5,000, and
10,000 samples. The results indicate that increasing
the data size from 1,000 to 10,000 samples yields
no significant performance improvement. Based
on these findings, we conclude that approximately
1,000 instruction tuning samples are sufficient to
achieve the observed performance gains.

4.2.2 Proportion of Comments in Target
Languages

CL-CoT is an instruction tuning method that en-
courages reasoning in English. Therefore, even
when instructions are given in low-resource lan-
guages, there is a possibility that comments in the
generated code may be written in English. To ad-
dress this concern, we conducted an additional anal-
ysis of the proportion of comments in the generated
code that were written in the same language as that
used in the instruction. Table 2 shows the propor-
tion of problems where comments in the generated
code were written in the instruction language out of
all 164 problems in CL-HumanEval. Bold values
represent the highest values for each model.

From the results in Table 2, CL-CoT showed a
higher proportion of comment generation in the
instruction language than the baseline in seven out
of nine combinations of three models and three low-
resource languages. This result demonstrates that
while CL-CoT promotes reasoning in English, it
can appropriately maintain the instruction language
in the output. This suggests that promoting cross-
lingual transfer and maintaining output language
consistency can be compatible, which is a result
that supports the effectiveness of CL-CoT.

5 Related Work

The work most closely related to ours is xCoT,
proposed by Chai et al. (2024) for mathematical-
reasoning tasks. xCoT uses cross-lingual CoT
prompting during inference by adding the instruc-
tion “Let’s think the question in Language and then
think step by step in English” to the input, which en-
courages LLMs to handle questions in low-resource
languages while reasoning and producing answers

447

Table 1: Evaluation results on CL-HumanEval using the Pass@1 metric. The table compares three LLMs with three
instruction tuning methods (Mono SFT, Para SFT, and CL-CoT). The highest score for each model–language pair is
highlighted in bold.

model instruction tuning method EN JA VI KR

Llama3-8B

Baseline 50.6 39.6 42.1 43.3
Mono SFT - 45.7 43.9 45.7
Para SFT - 38.4 43.9 36
CL-CoT - 43.9 45.1 45.1

Qwen2.5-7B

Baseline 61 54.3 51.2 48.2
Mono SFT - 54.3 54.9 52.4
Para SFT - 51.8 51.2 49.4
CL-CoT - 54.9 54.9 52.4

OpenCoder-8B

Baseline 59.8 41.5 40.9 43.9
Mono SFT - 45.1 39.6 42.7
Para SFT - 43.9 37.2 44.5
CL-CoT - 43.3 39.6 43.9

Llama3-8B Qwen2.5-7B OpenCoder-8B

Figure 3: Changes in Pass@1 performance when the size of instruction tuning data is increased.

in English. In contrast, our method is based on
instruction tuning that explicitly appends such CoT
prompts during tuning while preserving the instruc-
tion language in the output for cross-lingual code
generation.

In recent years, various methods have been pro-
posed to promote cross-lingual transfer. In the
following, we organize related work from three per-
spectives: approaches other than instruction tuning,
instruction tuning-based approaches, and prompt-
ing methods.

5.1 Methods for promoting cross-lingual
transfer other than instruction tuning

We first describe methods other than instruction
tuning for promoting cross-lingual transfer. Rep-
resentative methods include continual pre-training
and model merging.

Continual pre-training refers to further training
a pre-trained LLM on data specific to a target lan-
guage or task, enabling the model to adapt to that

domain (Fujii et al., 2024). Although this approach
improves comprehension in the target language, it
requires substantially more data than instruction
tuning to achieve comparable gains.

Model merging is a method that integrates pa-
rameters from multiple models with different ca-
pabilities (Yang et al., 2024). This method can
improve performance without requiring additional
training data or large-scale computation, and its
effectiveness in Japanese code generation has also
been reported (Nakano et al., 2025). However,
there is a constraint that integration is difficult be-
tween models with different architectures.

Our instruction tuning method has the advantage
of being applicable to existing models with a small
amount of data compared to these methods.

5.2 Instruction tuning methods promoting
cross-lingual transfer

We describe instruction tuning methods that pro-
mote cross-lingual transfer.

448

Table 2: Percentage of benchmark problems in which comments in the generated code were written in the instruction
language (low-resource language). The highest value for each model–language pair is highlighted in bold.

Model Instruction tuning method JA VI KR

Llama3-8B

Baseline 3.7 1.8 5.5
Mono SFT 0 0 0.6
Para SFT 0.6 1.2 0
CL-CoT 1.8 4.3 0

Qwen2.5-7B

Baseline 26.8 39.6 27.4
Mono SFT 23.1 33.5 47
Para SFT 40.2 46.3 40.9
CL-CoT 47.5 54.3 64.6

OpenCoder-8B

Baseline 74.3 93.3 88.4
Mono SFT 92.7 97 94.5
Para SFT 89.6 95.7 95.7
CL-CoT 92 96.3 95.7

Chen et al. (2023) compared monolingual and
multilingual instruction tuning. They created mul-
tilingual data using the Alpaca dataset and its
machine-translated versions, demonstrating that
multilingual tuning achieves performance equal to
or better than individual language-specific tuning
under the same computational constraints.

Shaham et al. (2024) investigated the effects of
small amounts of multilingual data. They showed
that adding just 40 multilingual examples to an En-
glish tuning set significantly improves multilingual
instruction-following capabilities.

Research focusing on language mixing within
instructions includes Yoo et al. (2024), who pro-
posed dividing instruction text into multiple lan-
guages at the sentence or word level. Ranaldi
et al. (2024) proposed CrossAlpaca, which im-
proves cross-lingual semantic consistency through
demonstrations combining cross-lingual instruction
following and translation following.

Compared to these approaches, our method is
distinguished by incorporating prompts that en-
courage English reasoning within low-resource lan-
guage instructions.

5.3 Promoting cross-lingual transfer using
CoT

Many methods for promoting cross-lingual transfer
using CoT have also been proposed.

Shi et al. (2022) demonstrated that providing
LLMs with prompts for step-by-step reasoning in
English achieves high performance regardless of
the language of the problem statement.

Qin et al. (2023) proposed Cross-Lingual
Prompting (CLP). This method employs a two-

stage approach that first aligns cross-lingual un-
derstanding and then performs task-specific rea-
soning, thereby improving multilingual reasoning
performance.

Our method differs from these prompting ap-
proaches by incorporating CoT elements that en-
courage English reasoning during instruction tun-
ing.

6 Conclusion

This study aims to narrow code generation perfor-
mance gaps for low-resource languages by lever-
aging cross-lingual transfer. Imbalanced language
resources in LLM pre-training create performance
disparities across languages. Based on the internal
translation hypothesis, we propose CL-CoT, which
adds English reasoning prompts to low-resource
language instructions.

Evaluation results confirmed that the proposed
method can promote cross-lingual transfer using
minimal data and improve code generation per-
formance in low-resource languages. In particu-
lar, evaluation in three languages—Japanese, Viet-
namese, and Korean—demonstrated the versatility
of CL-CoT. Additionally, the elements in CL-CoT
that encourage reasoning in English were found
to function effectively for code generation from
low-resource languages.

These findings provide valuable insights for de-
veloping LLMs aimed at enhancing code genera-
tion performance in non-English speaking regions
and for designing instruction tuning methods that
promote cross-lingual transfer.

Future work will focus on improving per-

449

formance in multilingual code generation tasks
through collecting extensive data in other lan-
guages and refining the CL-CoT method. Further-
more, we plan to extend the insights gained from
our proposed method to other tasks and validate
the generalizability of our approach.

References
Linzheng Chai, Jian Yang, Tao Sun, Hongcheng Guo,

Jiaheng Liu, Bing Wang, Xiannian Liang, Jiaqi
Bai, Tongliang Li, Qiyao Peng, and 1 others. 2024.
xcot: Cross-lingual instruction tuning for cross-
lingual chain-of-thought reasoning. arXiv preprint
arXiv:2401.07037.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Pinzhen Chen, Shaoxiong Ji, Nikolay Bogoychev, An-
drey Kutuzov, Barry Haddow, and Kenneth Heafield.
2023. Monolingual or multilingual instruction tun-
ing: Which makes a better alpaca. arXiv preprint
arXiv:2309.08958.

Kazuki Fujii, Taishi Nakamura, Mengsay Loem, Daiki
Iida, Seiya Ohi, Kakeru Hattori, Shota Hirai, Sakae
Mizuki, Rio Yokota, and Naoaki Okazaki. 2024.
Building a japanese-centric large language model
via continued pre-training. In Proceedings of the
30th Annual Meeting of the Association for Natural
Language Processing (NLP). The Association for
Natural Language Processing (NLP). This work is
licensed under CC BY 4.0.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia
Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, and 1 others. 2022. The stack: 3 tb of
permissively licensed source code. arXiv preprint
arXiv:2211.15533.

Mingda Li, Abhijit Mishra, and Utkarsh Mujumdar.
2024. Bridging the language gap: Enhancing multi-
lingual prompt-based code generation in llms via
zero-shot cross-lingual transfer. arXiv preprint
arXiv:2408.09701.

Zihao Li, Yucheng Shi, Zirui Liu, Fan Yang, Ali Payani,
Ninghao Liu, and Mengnan Du. 2025. Language
ranker: A metric for quantifying llm performance
across high and low-resource languages. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 39, pages 28186–28194.

Noriko Nakano, Yuha Nishigata, Waka Ito, Nao Soma,
Miyu Sato, and Kimio Kuramitsu. 2025. Enhancing
cross-lingual transfer in code generation capabilities
through model merging. In Proceedings of the An-
nual Conference of the Japanese Society for Artificial
Intelligence.

Elise Paradis, Kate Grey, Quinn Madison, Daye Nam,
Andrew Macvean, Vahid Meimand, Nan Zhang, Ben
Ferrari-Church, and Satish Chandra. 2024. How
much does ai impact development speed? an
enterprise-based randomized controlled trial. arXiv
preprint arXiv:2410.12944.

Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec,
Bettina Messmer, Negar Foroutan, Amir Hossein
Kargaran, Colin Raffel, Martin Jaggi, Leandro
Von Werra, and Thomas Wolf. 2025. Fineweb2:
One pipeline to scale them all–adapting pre-training
data processing to every language. arXiv preprint
arXiv:2506.20920.

Libo Qin, Qiguang Chen, Fuxuan Wei, Shijue Huang,
and Wanxiang Che. 2023. Cross-lingual prompt-
ing: Improving zero-shot chain-of-thought reasoning
across languages. arXiv preprint arXiv:2310.14799.

Leonardo Ranaldi, Giulia Pucci, and Andre Fre-
itas. 2024. Empowering cross-lingual abilities
of instruction-tuned large language models by
translation-following demonstrations. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 7961–7973, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Miyu Sato, Yuha Nishigata, Yuka Akinobu, Toshiyuki
Kurabayashi, and Kimio Kuramitsu. 2025. Does
instruction tuning with parallel structure promote
cross-lingual transfer? In Proceedings of the Thirty-
First Annual Meeting of the Association for Natural
Language Processing. The Association for Natural
Language Processing.

Miyu Sato, Yui Obara, Nao Souma, and Kimio Ku-
ramitsu. 2024. Cl-humaneval: A benchmark for eval-
uating cross-lingual transfer though code generation.
In Proceedings of the 38th Pacific Asia Conference
on Language, Information and Computation, pages
656–664.

Lisa Schut, Yarin Gal, and Sebastian Farquhar. 2025.
Do multilingual llms think in english? arXiv preprint
arXiv:2502.15603.

Uri Shaham, Jonathan Herzig, Roee Aharoni, Idan
Szpektor, Reut Tsarfaty, and Matan Eyal. 2024. Mul-
tilingual instruction tuning with just a pinch of multi-
linguality. arXiv preprint arXiv:2401.01854.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, and 1 others.
2022. Language models are multilingual chain-of-
thought reasoners. arXiv preprint arXiv:2210.03057.

450

https://doi.org/10.18653/v1/2024.findings-acl.473
https://doi.org/10.18653/v1/2024.findings-acl.473
https://doi.org/10.18653/v1/2024.findings-acl.473

Chaozheng Wang, Zongjie Li, Cuiyun Gao, Wenxuan
Wang, Ting Peng, Hailiang Huang, Yuetang Deng,
Shuai Wang, and Michael R Lyu. 2024. Exploring
multi-lingual bias of large code models in code gen-
eration. arXiv preprint arXiv:2404.19368.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Chris Wendler, Veniamin Veselovsky, Giovanni Monea,
and Robert West. 2024. Do llamas work in english?
on the latent language of multilingual transformers.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 15366–15394.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
bert. arXiv preprint arXiv:1904.09077.

Yuemei Xu, Ling Hu, Jiayi Zhao, Zihan Qiu, Kexin
Xu, Yuqi Ye, and Hanwen Gu. 2025. A survey
on multilingual large language models: Corpora,
alignment, and bias. Frontiers of Computer Science,
19(11):1911362.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang,
Xiaochun Cao, Jie Zhang, and Dacheng Tao. 2024.
Model merging in llms, mllms, and beyond: Meth-
ods, theories, applications and opportunities. arXiv
preprint arXiv:2408.07666.

Haneul Yoo, Cheonbok Park, Sangdoo Yun, Alice Oh,
and Hwaran Lee. 2024. Code-switching curricu-
lum learning for multilingual transfer in llms. arXiv
preprint arXiv:2411.02460.

Hongbin Zhang, Kehai Chen, Xuefeng Bai, Yang Xi-
ang, and Min Zhang. 2024. Lingualift: An ef-
fective two-stage instruction tuning framework for
low-resource language reasoning. arXiv preprint
arXiv:2412.12499.

Jun Zhao, Zhihao Zhang, Luhui Gao, Qi Zhang, Tao Gui,
and Xuanjing Huang. 2024. Llama beyond english:
An empirical study on language capability transfer.
arXiv preprint arXiv:2401.01055.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, and 1 others. 2023. Lima: Less is more
for alignment. Advances in Neural Information Pro-
cessing Systems, 36:55006–55021.

451

	Introduction
	Background
	Code Generation
	Language Resources
	Cross-Lingual Transfer

	Proposed Method
	Instruction Tuning
	Para-lingual SFT
	Cross-Lingual Chain-of-Thought

	Experiments
	Experimental Settings
	Target Languages
	Instruction Tuning Methods for Comparison
	Instruction Tuning Dataset
	Target LLMs for Evaluation
	Evaluation Method

	Experimental results
	Performance Changes by Instruction Tuning Data Size
	Proportion of Comments in Target Languages

	Related Work
	Methods for promoting cross-lingual transfer other than instruction tuning
	Instruction tuning methods promoting cross-lingual transfer
	Promoting cross-lingual transfer using CoT

	Conclusion

