

Forecasting Time Series with LLMs via
Patch-Based Prompting and Decomposition

Mayank Bumb, Anshul Vemulapalli, Sri Harsha Jella, Anish Gupta, An
La, Ryan Rossi, Franck Dernoncourt, Hongjie Chen, Nesreen Ahmed,

Yu Wang

Proceedings of the 39th Pacific Asia Conference on
Language, Information and Computation (PACLIC 39)

Emmanuele Chersoni, Jong-Bok Kim (eds.)

2025

© 2025. Mayank Bumb, Anshul Vemulapalli, Sri Harsha Jella, Anish Gupta, An La, Ryan Rossi,
Franck Dernoncourt, Hongjie Chen, Nesreen Ahmed, Yu Wang. Forecasting Time Series with
LLMs via Patch-Based Prompting and Decomposition. In Emmanuele Chersoni, Jong-Bok Kim
(eds.), Proceedings of the 39th Pacific Asia Conference on Language, Information and
Computation (PACLIC 39), 472-484. Institute for the Study of Language and Information, Kyung
Hee University. This work is licensed under the Creative Commons Attribution 4.0 International
License.

Forecasting Time Series with LLMs via
Patch-Based Prompting and Decomposition

Mayank Bumb1, Anshul Vemulapalli1, Sri Harsha Jella1, Anish Gupta1, An La1,
Ryan Rossi2, Franck Dernoncourt2,

Hongjie Chen3, Nesreen Ahmed4, Yu Wang5

1University of Massachusetts Amherst, 2Adobe, 3Dolby Labs, 4Intel, 5University of Oregon

Abstract
Recent advances in Large Language Models
(LLMs) have demonstrated new possibilities
for accurate and efficient time series analysis,
but prior work often required heavy fine-tuning
and/or ignored inter-series correlations. In this
work, we explore simple and flexible prompt-
based strategies that enable LLMs to perform
time series forecasting without extensive re-
training or the use of a complex external archi-
tecture. Through the exploration of specialized
prompting methods that leverage time series
decomposition, patch-based tokenization, and
similarity-based neighbor augmentation, we
find that it is possible to enhance LLM forecast-
ing quality while maintaining simplicity and
requiring minimal preprocessing of data. To
this end, we propose our own method, PatchIn-
struct, which enables LLMs to make precise
and effective predictions.

1 Introduction

Time-series forecasting (TSF) has a broad range of
applications in agriculture, business, epidemiology,
finance, etc. Many of these applications require
robust predictions of time series, and accurately
modeling the dependencies between variables re-
mains to be a challenge (Shao et al., 2020). Tradi-
tional forecasting models such as ARIMA, LSTMs,
and even Transformer/Graph-based architectures
have displayed a strong performance on these tasks
(Zhou et al., 2024).

More recently, Large Language Models (LLMs)
have shown a promising future in modeling time se-
ries, with accurate predictions that rival state of the
art (SOTA) methods, due to their strengths in pat-
tern recognition, sequence modeling, and general-
ization across tasks. However, current LLM-based
methods often rely on complex architectures or re-
quire heavy fine-tuning, limiting their scalability to
real-world applications.

One prominent approach, S2IP-LLM (Pan et al.,
2024), embeds time series into a semantic space to

enhance forecasting performance. While effective,
it introduces two key limitations. First, it incurs a
high computational cost during inference due to its
reliance on complex decomposition and patching
pipelines. Second, it does not explicitly model
dependencies across related time series, which can
be critical in domains such as traffic and energy
forecasting where inter-series relationships play a
significant role.

We aim to develop a method (see Figure 1) that
maintains the predictive strength of LLM-based
models while addressing the above limitations of
inference speed and generalization. Therefore
we guide our experimentation around the idea of
whether we can create general-purpose prompts
that guide LLMs to forecast time series both ac-
curately and efficiently, without requiring model
fine-tuning or architectural changes.

To this end, we introduce PatchInstruct, a
prompt-based framework that tokenizes time series
data into meaningful patches that encapsulate tem-
porally relevant patterns and guides the LLM via
structured natural language instructions to output
precise predictions. Unlike prior work, PatchIn-
struct requires no model retraining or architecture
modification and also significantly reduces infer-
ence time (in comparison to the baseline and com-
plex architectures) alongside token usage while
preserving or improving accuracy.

We compare PatchInstruct with several other
prompting strategies—including Zero-shot, Neigh-
bors, and PatchInstruct + Neighbors—and evaluate
them on diverse, real-world datasets (Weather and
Traffic), primarily using GPT-4 and GPT-4o as the
LLM backbones.

Across the datasets and small forecasting hori-
zons we study (H ≤ 12), PatchInstruct is typically
the most accurate among our baselines in MSE/-
MAE and, in our setup, reduces inference overhead
by 10x–100x compared to S2IP-LLM while main-
taining comparable accuracy. Neighbor augmen-

472

LLM

"y1, y2, y3, ... , yh"

System Prompt (Based on method)
Zeroshot (LLMTime)Neighbors PatchInstruct + NeighsPatchInstruct

"x1, x2, x3, ... , x96"

(Converting Time Series to String)

"Predict the next <h> values"

Horizon Instructions

Forecasting Time Series (96 values) Ground Truth

Metrics
Predictions

Figure 1: LLM-based Time-Series Forecasting Pipeline

tation is dataset-dependent: it helps on Weather,
where retrieved series are highly informative, but
can underperform on datasets with weaker cross-
series alignment.

Taken together, these results indicate that careful
prompt design can substitute for portions of model-
specific architecture in our tested setting, enabling
scalable and domain-adaptable time-series fore-
casting with LLMs. Our evaluations standardize
on GPT for output-format reliability (other back-
bones frequently violated the required H-length
outputs in pilots), and we fix the neighbor count
to (k = 5) to fit a 50k input-token budget; broader
cross-backbone and budget studies are left for fu-
ture work.

2 Related Work

2.1 Time Series Foundation Models

Foundation Models (FMs)—large pre-trained
models that learn general-purpose representa-
tions—have propelled state-of-the-art results in
NLP and CV, and the same paradigm is increas-
ingly adapted to time series (Shi et al., 2024).
Liang et al. provide a useful taxonomy for Time
Series Foundation Models (TSFMs) along four
axes: data category (standard, spatial, or tra-
jectory/event), model architecture (Transformer-,
non-Transformer-, or diffusion-based), pre-training
strategy (self-supervised vs. supervised), and appli-
cation domain (Liang et al., 2024).

While diverse architectures exist, Transformer
backbones remain prevalent due to their ability
to capture long-range dependencies in sequential
data (Miller et al., 2024). Diffusion-style founda-
tions have also emerged, e.g., TimeDiT, which mar-
ries diffusion objectives with Transformer blocks
for time series analysis (Cao et al., 2024b). Among
open and commercial TSFMs, models such as
Lag-Llama demonstrate that large-scale pretraining

across heterogeneous collections improves adapt-
ability and zero/few-shot forecasting quality (Ra-
sul et al., 2023). In practice, the choice of pre-
training signal (contrastive, masked reconstruction,
forecasting-style objectives) and coverage of data
domains strongly influences downstream general-
ization.

2.2 LLMs for Time Series Forecasting

Large Language Models (LLMs) have recently
been explored for time series by casting numerical
forecasting as a language problem via tokeniza-
tion, prompting, and in-context learning. Foun-
dational work on Transformer-based forecasting
for raw continuous inputs includes TST (Zerveas
et al., 2020), which applies a Transformer encoder
to multivariate sequences. Subsequent advances
such as PatchTST (Nie et al., 2022) introduce patch-
ing—partitioning series into localized segments
(patch tokens)—and channel-independence, which
together improve efficiency and accuracy. Thus,
PatchTST builds on earlier Transformer formula-
tions like TST; our discussion reflects this chronol-
ogy.

A parallel line of research converts real-valued
series into discrete tokens to better leverage
the next-token prediction strengths of LLMs.
Chronos (Ansari et al., 2024) quantizes and scales
observations into a fixed vocabulary to enable zero-
shot and transfer settings. Digit-level tokeniza-
tion treats each numeric digit as a token, align-
ing forecasting with language modeling mechan-
ics (Gruver et al., 2024). Prompt-based formula-
tions go further: PromptCast frames forecasting as
sentence-to-sentence generation with task-specific
prompts (Xue and Salim, 2023), and GPT4TS
demonstrates that a single LLM can address fore-
casting, anomaly detection, and classification using
textual prompts alone (Zhou et al., 2023).

Despite these advances, robustness on hetero-

473

geneous, irregular, and partially observed series
remains challenging. LLM4TS proposes a two-
stage pipeline that first aligns pretrained LLMs
to standardized time series structures and then
fine-tunes for forecasting (Chang et al., 2024).
Decomposition-aware prompting (e.g., TEMPO)
explicitly models trend/seasonal/residual com-
ponents to improve interpretability and perfor-
mance (Cao et al., 2024a). Hybrid systems inte-
grate spatial and relational biases—TPLLM fuses
CNNs/GCNs with LLMs for traffic prediction (Ren
et al., 2024), while GenTKG combines retrieval-
augmented generation with parameter-efficient tun-
ing for temporal knowledge graphs (Liao et al.,
2024).

In contrast to methods that rely on heavy fine-
tuning or complex multi-component stacks, our
work (PATCHINSTRUCT) adopts a training-free
prompting framework: we decompose inputs into
compact patch segments and instruct LLMs di-
rectly. This minimizes token usage and imple-
mentation overhead while preserving competi-
tive accuracy—particularly on short-horizon fore-
casts—across diverse domains.

3 Methodology

We propose an approach that leverages Large Lan-
guage Models (LLMs) for time series forecasting
through specialized prompt engineering techniques
that eliminates the need for model fine-tuning or
architectural modifications.

Our approach begins with a zero-shot baseline,
inspired by TimeLLM (Gruver et al., 2024), where
the model is prompted with raw historical time se-
ries values and tasked with predicting future values.
While this baseline offers simplicity and general-
ity, it lacks the inductive bias necessary to capture
local temporal dynamics, leading to suboptimal
performance in complex forecasting settings. Our
second baseline S2IP-LLM introduces significant
inference-time overhead due to its reliance on com-
plex decomposition pipelines and fine-tuning, lim-
iting its scalability in real-world deployments.

To address these limitations, we introduce
PatchInstruct (see Figure 2), a prompting strategy
that encode temporal structure through patch-based
representations, and provide pretrained LLMs more
context on the dataset. The core idea is to decom-
pose a time series into fixed-length overlapping
patches and provide them to the LLM in a struc-
tured format, along with instructions to predict fu-

ture values.
Additionally, we experimented the model’s fore-

casting ability by supplementing the target time
series with a small set of similar time series re-
ferred to as Neighbors (Neighs). Specifically, we
select the five most similar time series from the
dataset’s past seen data, referred to as neighbors.
The motivation behind this approach is to provide
the LLM with additional contextual signals and re-
curring patterns that may not be fully observable in
the target series alone.

We finally also tested a combination of these the
Patch-Instruct and Neighbors strategy, enriching
the prompt with structurally decomposed informa-
tion from the target series (via patching), while
augmenting it with relevant patterns from similar
series (via nearest neighbors).

In the following subsections, we detail the con-
struction of each approach, describe the datasets
and evaluation metrics used, and present a compar-
ative analysis of their forecasting performance.

We evaluate our method on two time series
datasets: Weather and Traffic. These datasets com-
prised of continuous measurements sampled at reg-
ular intervals. A 96-timestep input window is used
to forecast future horizons of 1,2,3,4,5,6 and 12
steps.

3.1 Overview of Framework

Our framework is designed to adapt large language
models (LLMs) for time series forecasting without
any fine-tuning, using carefully structured prompts
that condition the model with temporal data and
forecasting instructions. The pipeline is modular
and supports multiple prompting strategies, includ-
ing PatchInstruct, Neighbors, and PatchInstruct +
Neighbors, and Zeroshot by modifying the struc-
ture of the system prompt and the input representa-
tion.

At inference time, a raw time series is converted
into a sequence of string-formatted numerical val-
ues. Depending on the method, additional transfor-
mations are applied—for example, decomposing
the sequence into overlapping fixed-length patches
(in PatchInstruct), or retrieving similar time series
(in Neighs). These inputs are concatenated with
forecasting instructions (e.g., "Predict the next h
values") and passed to the LLM. The output is
parsed into a numerical forecast and compared with
the ground truth using standard forecasting metrics.

In addition to forecasting, PatchInstruct also

474

"x1, x2, x3, ... , x96"

(Converting Time Series to String)

Forecasting Time Series

"You are a time-series forecasting agent.
(Patching + Output Instructions)."

System Prompt

"Predict the next <h> values"

LLM

Horizon Instructions

St
ru

ct
ur

ed
 O

ut
pu

t

[
 [p0, p1, p2],

 [p3, p4, p5],

 ...
 [p93, p94, p95],

]

"y1, y2, ... , yh"

Ground Truth

Patches output
(Optional verification)

MetricsPredictions

Figure 2: PatchInstruct Forecasting Pipeline

prompts the model to output reconstructed patches
from the input, enabling an optional interpretability
step. These predicted patches can be compared
with the actual ones to assess whether the LLM is
learning meaningful temporal structure and captur-
ing local dynamics, thus providing deeper insight
into the model’s understanding of the task.

3.2 Prompt Design

We now delve deeper into the specific construc-
tion of each prompting strategy. This section pro-
vides detailed formulations illustrating how time
series data, patching instructions, and neighboring
trends are encoded within the input to the LLM.
The prompts were designed through rigorous em-
pirical testing to ensure clarity and effectiveness.
Each prompt consists of a system prompt, which
defines the forecasting method and describes how
we construct the series, and a user prompt, which
contains the actual time series data provided to the
LLM for prediction.

PatchInstruct is built upon the zeroshot prompt
inspired by LLMTime, this method decomposes
the time series into patches and the LLM uses them
to form predictions. Below, we outline the structure
of the best Patch-Instruct prompt. Additional ex-
periments exploring alternative patching strategies
are presented in the Appendix A. The following
prompt is a user prompt used for most methods to
specify the horizon, and give the context window
to the LLM.

Horizon Prompt (Input Time Series)

Continue the following sequence without
producing any additional text. Sequence:
<x1, x2, x3, ..., x96>. Predict the next 3 val-
ues.

PatchInstruct System Prompt

You are a forecasting assistant that sees time
series data. The sequence represents the total
regional humidity measured every 10 minutes.
Task: (1) Split the series into overlapping
patches with window size 3 and stride 1. (2)
Generate the patches in natural order, then re-
verse the list so the most recent patch appears
first. (3) Use these patch tokens to forecast the
next 3 values.
Output format:
Patches:
[[latest_patch], ..., [oldest_patch]]
Prediction:
[y1, y2, y3]
No headings or extra words. Decimals ≤ 4
places; keep leading zeros (e.g., 0.8032).

For the System prompt, we included both the
patching instructions and dataset-specific informa-
tion, such as the name of the series. Among the
variants of prompts tested, we found reverse patch-
ing to perform the best. Further details and compar-
isions of patching strategies are provided in (Sec-
tion A; see appendix for Table 5).

Neighs is built upon our zero-shot prompt. This
method adds closest neighboring series in terms of

475

euclidean distance over all the past windows of data
and construct a composite prompt by giving all the
5 neighboring prompts as additional context. We
outline the structure of the Neighs prompt used for
the weather dataset in the “Neighs System Prompt”
box. We specified the number of neighbors that,
and gave the model additional instructions.

PatchInstruct+Neighs integrates the strengths
of both PatchInstruct and Neighs approaches.
We combined the two methods using the sys-
tem prompt in the “PatchInstruct+Neighs system
prompt” box.

Neighs System Prompt

You are a forecasting assistant that sees time
series data. The sequence represents the total
regional humidity measured every 10 minutes.
You will also be given 5 neighbor time-series
similar to the one to forecast. Use it to under-
stand the trends.
Output format: [y1, y2, y3]
No headings or extra words. Decimals ≤ 4
places; keep leading zeros (e.g., 0.8032).

PatchInstruct + Neighs System Prompt

You are a forecasting assistant that sees time
series data. The sequence represents the total
regional humidity measured every 10 minutes.
You will also be given 5 neighbor time-series
similar to the one to forecast. Use it to under-
stand the trends.
Task: (1) Split the series into overlapping
patches with window size 3 and stride 1. (2)
Generate the patches in natural order, then re-
verse the list so the most recent patch appears
first. (3) Use these patch tokens to forecast the
next 3 values.
Output format:
Patches:
[[latest_patch], ..., [oldest_patch]]
Prediction:
[y1, y2, y3]
No headings or extra words. Decimals ≤ 4
places; keep leading zeros (e.g., 0.8032).

In summary, these prompt-based variants allow
us to systematically assess the impact of explicit
instructions for time series decomposition, patch-
ing, and neighbor augmentation within LLM-based
forecasting frameworks. The results, presented in
Table 4, provide a comparative analysis of these

prompting strategies.

3.3 Evaluation

We evaluate forecasting performance using Mean
Squared Error (MSE), Mean Absolute Error
(MAE). Runtime Efficiency and Input/Output to-
ken usage.

4 Experiments

In this section, we design experiments to investi-
gate our proposed patch instruct framework.

4.1 Backbone selection

PatchInstruct is training-free and works with any
instruction-following LLM in principle. In practice,
our pilot runs compared GPT, Gemini, and Llama.
Both Gemini and Llama exhibited inconsistent de-
coding for multi-step forecasting—specifically, fail-
ing to return exactly H predictions at a given hori-
zon despite explicit instructions and formatting
templates. These output-format errors impeded fair
comparison and large-scale evaluation. We there-
fore standardize on GPT for all reported results
to ensure consistent generation of horizon-length
prediction vectors.

4.2 Datasets

We evaluate our approach on two real-world
datasets: Weather and Traffic. Weather captures
fast-changing environmental conditions, while
Traffic reflects urban flow patterns with spatial and
temporal dependencies

The Weather dataset is collected from a mete-
orological station at the Max Planck Institute for
Biogeochemistry (Jena, Germany). It contains 14
meteorological features, including temperature, hu-
midity, and atmospheric pressure measurements.
The high-frequency recordings capture intricate
weather dynamics critical for testing short-term
forecasting precision.

The Traffic dataset consists of sensor network
data from Los Angeles, collected between March
and June 2012. It records traffic flow rates and con-
gestion patterns across urban arteries. The spatial-
temporal correlations in this dataset test the model’s
ability to capture complex topological dependen-
cies in transportation systems.

We summarize key statistics in Table 1. This
selection provides systematic coverage of (1)
different sampling frequencies, (2) variable se-
quence lengths, and (3) heterogeneous feature

476

interactions—three critical axes for stress-testing
tokenization strategies in temporal learning tasks.
The datasets’ public availability ensures repro-
ducibility, while their domain diversity demon-
strates our method’s generalizability beyond nar-
row application contexts.

Dataset Features Frequency Time Span Samples Value Range

WEATHER 14 10 minutes 3 years 157,680 0.5–18.13
TRAFFIC 181 Hourly 4 months 34,172 2.5–70

Table 1: Summary of datasets used in our experiments.

4.3 Main Results
For our experiments, we adopt S2IP-LLM as the
primary baseline, a method that aligns time se-
ries embeddings with the semantic space of a pre-
trained LLM through a tokenization framework.
While effective, S2IP-LLM suffers from signifi-
cant computational overhead, requiring extensive
training and inference time due to its fine-tuning of
LLM components. All methods are evaluated in a
consistent zero-shot setting without model retrain-
ing to isolate the impact of prompting strategies.

Using various prompting strategies, we in-
structed a pre-trained LLM to consider time-series
patches and utilize them for forecasting without
any additional fine-tuning or retraining. Our exper-
iments demonstrate that such patch-based prompt-
ing methods can significantly improve forecast-
ing performance across multiple datasets and over
shorter horizons. In contrast to models like S2IP-
LLM, which rely on explicit decomposition, se-
mantic alignment, and parameter tuning, our ap-
proach leverages instruction-tuned LLMs. Among
all the strategies evaluated the PatchInstruct tech-
nique consistently delivered the best results. This
suggests that prompting pre-trained LLMs with
thoughtfully structured temporal context can match
or even surpass models trained from scratch, of-
fering a lightweight yet effective alternative for
time-series forecasting.

Table 3 presents a performance comparison
between S2IPLLM (the baseline) and our best-
performing Patch Instruct method across multiple
time series datasets and forecast horizons. The
results clearly indicate that Patch Instruct consis-
tently outperforms the baseline in terms of both
MSE and MAE. Finally, Table 3 compares the two
methods in terms of input/output token counts and
computation time. The analysis reveals that Patch
Instruct not only improves forecasting accuracy but

also significantly reduces computational overhead.
Overall, this comparison highlights the efficiency
and effectiveness of the Patch Instruct method.

Dataset Horizon S2IP-LLM Zeroshot PatchInstruct

MSE MAE MSE MAE MSE MAE

WEATHER

1 0.0095 0.056 0.0028 0.043 0.0014 0.029
2 0.017 0.077 0.0085 0.072 0.0076 0.067
3 0.0238 0.0875 0.0106 0.068 0.0110 0.085
4 0.0326 0.1051 0.0115 0.085 0.0236 0.113
5 0.0371 0.1120 0.0277 0.1 0.0159 0.094
6 0.0439 0.1228 0.0204 0.11 0.0101 0.083
12 0.0904 0.1823 0.1098 0.221 0.0436 0.137

TRAFFIC

1 21.0814 2.4067 43.49 3.18 20.05 2.76
2 24.0935 2.4919 23.47 2.53 9.38 1.89
3 29.9573 2.7849 22.38 2.54 6.47 1.78
4 29.8382 2.6147 27.50 2.87 11.15 1.89
5 36.0289 2.7971 34.27 3.20 8.46 1.88
6 42.3193 3.0444 29.66 3.07 25.59 2.75
12 68.7149 3.8473 296.20 7.72 235.75 5.89

Table 2: Results comparing our approach to baselines.

Dataset Horizon S2IP-LLM Zeroshot PatchInstruct

Time (s) IT OT Time (s) IT OT Time (s) IT OT

WEATHER

1 535.42 7 1 1.36 7370 80 1.24 8500 80
2 518.45 7 2 1.06 7370 120 1.20 8500 120
3 533.73 7 3 1.20 7370 160 1.01 8500 160
4 518.37 7 4 1.01 7370 200 1.16 8500 196
5 537.85 7 5 1.14 7370 240 1.29 8500 216
6 522.43 7 6 1.35 7370 280 2.05 8500 280
12 558.67 7 12 1.44 7370 520 1.51 8500 499

TRAFFIC

1 50.94 7 1 2.59 7360 80 1.31 7950 86
2 52.88 7 2 2.04 7360 116 1.05 7950 134
3 55.34 7 3 1.17 7360 160 1.11 7950 185
4 51.00 7 4 2.13 7360 200 1.17 7950 223
5 49.96 7 5 1.14 7360 240 1.12 7950 239
6 50.11 7 6 1.38 7360 268 1.23 7950 336
12 52.66 7 12 1.78 7360 520 1.36 7950 558

Table 3: Token and Time Comparison for Forecasting.

4.4 Cost vs. Performance Analysis
Our instruction-based forecasts deliberately spend
more input tokens than the baseline S2IP-LLM.
Across the prompt variants, a single prediction
consumes about ≈ 800 - 1000 input tokens. By
contrast, S2IP-LLM needs only the horizon-length
of output tokens once its patch encoder has been
trained. The extra prompt length therefore repre-
sents about a 100 times increase in in front-loaded
cost.

Because our method relies on an already-trained
LLM and does no task-specific fine-tuning, the end-
to-end latency of producing a forecast collapses
from minutes to just seconds. For example, on the
Weather dataset at horizon = 1, S2IP-LLM requires
535 s, whereas Reverse Patch returns the prediction
in 0.86 (see Table 3). Thus, even after accounting

477

for the larger prompt, our approach is two to three
orders of magnitude faster in real-time settings.

The additional 800–900 input tokens result in a
substantial improvement in short-range forecasting
accuracy. On Weather (H=1), mean squared error
(MSE) drops from 1.15 × 10−2 to 2.6 × 10−4 (a
97.7% reduction), and mean absolute error (MAE)
decreases from 6.52× 10−2 to 1.4× 10−2. Simi-
lar improvements are observed on Traffic, where
the MSE at the same horizon is reduced by 85%,
indicating that the gains generalize across domains.

Given (i) the low marginal price of LLM to-
kens relative to GPU training hours, and (ii) the
consistent short-horizon error reductions that are
operationally most valuable, the accuracy and la-
tency benefits comfortably offset the larger prompt
size. Hence trading cheap tokens for immediate,
higher-quality forecasts yields a more favorable
cost–performance envelope than the current state
of the art, especially when rapid deployment and
low engineering overhead are priorities.

4.5 Neighbor Results

In order to understand whether incorporating neigh-
boring time-series into our PatchInstruct approach
leads to better performance we compare our re-
sults for PatchInstruct and Neighs across multiple
datasets (Table 4).

We cap the input at 50k tokens to control la-
tency and cost across datasets. Given our prompt
structure (task description, target series patches,
and retrieved neighbors), this budget allows at
most (k = 5) neighbors without truncation on our
longest contexts. We thus fix the number of neigh-
bors for all experiments to maximize usable con-
textual evidence while remaining within the token
limit.

Both the Neighs and PatchInstruct+Neighs
prompting strategies demonstrate clear improve-
ments over the S2IP-LLM baseline across datasets.
As seen in Table 4, using Neighs alone often im-
proves performance over PatchInstruct, particularly
in the Weather dataset. For example, at horizon 2,
Neighs reduces the MSE from 0.0076 (PatchIn-
struct) to 0.0039 and MAE from 0.067 to 0.051. At
horizon 4, Neighs again performs better with an
MSE of 0.0172 compared to 0.0236. These gains
suggest that incorporating neighboring series can
help the model infer more accurate trends by pro-
viding contextual information beyond the target
sequence itself.

However, this is not universally true. In some
cases, Neighs and PatchInstruct+Neighs underper-
form compared to PatchInstruct. For instance, in
the Traffic dataset at horizon 5, Neighs shows a sig-
nificant degradation, increasing the MSE from 8.46
(PatchInstruct) to 43.50, and PatchInstruct+Neighs
to 36.43. This indicates that when neighbor series
are less correlated, they can introduce confusion
rather than useful context.

Despite these exceptions, the PatchIn-
struct+Neighs strategy still achieves the best
overall performance in many cases aswell. But
these results also highlight the importance of
carefully selecting relevant neighbors to avoid
negative transfer and ensure consistent forecasting
improvements.

These results underline the strength of combin-
ing temporal structuring (via patches) with spatial
context (via neighbors), enabling the model to learn
more holistic representations and deliver signifi-
cantly more accurate forecasts than our baseline.

Dataset Horizon PatchInstruct Neighs PatchInstruct+Neighs

MSE MAE MSE MAE MSE MAE

WEATHER

1 0.0014 0.029 0.0024 0.042 0.0032 0.046
2 0.0076 0.067 0.0039 0.051 0.0056 0.056
3 0.0110 0.085 0.0083 0.065 0.0138 0.087
4 0.0236 0.113 0.0172 0.091 0.0114 0.075
5 0.0159 0.094 0.0105 0.077 0.0124 0.088
6 0.0101 0.083 0.0116 0.084 0.0338 0.108
12 0.0436 0.137 0.0371 0.144 0.0393 0.141

TRAFFIC

1 20.05 2.76 35.15 3.05 22.09 2.72
2 9.38 1.89 18.85 2.50 15.40 2.19
3 6.47 1.78 26.67 2.74 13.61 2.10
4 11.15 1.89 21.41 2.57 13.22 2.15
5 8.46 1.88 43.50 3.39 36.43 3.25
6 25.59 2.75 40.42 3.35 14.94 2.13
12 235.75 5.89 285.82 7.71 269.68 6.88

Table 4: Forecasting Comparison: PatchInstruct vs
Neighs vs PatchInstruct+Neighs.

5 Analysis

This analysis compares the performance of S2IP-
LLM (baseline) against our approach across differ-
ent datasets and forecast horizons. The comparison
focuses on error metrics (MSE and MAE) where
lower values indicate better performance.

5.1 Performance Overview Across Models

The S2IP-LLM baseline consistently shows higher
error rates compared to our methods across
datasets. Our methods shows remarkable improve-
ments, with percentage reductions in MSE ranging
from approximately 13% to 85% depending on the

478

dataset and method. For the Weather dataset, all
our methods achieve over 80% MSE improvement.
Our method achieve orders-of-magnitude faster
runtimes than S2IP-LLM with modest token
usage growth, making them highly efficient for
inference, especially when balanced with patch or
neighbor-based prompts.

5.2 Method-Specific Performance

Our approach exhibits distinct strengths across
datasets and forecasting horizons. The PatchIn-
struct framework demonstrates the most bal-
anced performance, delivering substantial im-
provements on both the Traffic and Weather
datasets—achieving up to 83% and 85% improve-
ment over the baseline, respectively. The Neighs
variant, which augments prompts with the closest
neighboring time series, performs particularly well
on the Weather dataset. Meanwhile, the combined
PatchInstruct+Neighs strategy outperforms other
methods on the Traffic dataset at longer horizons,
highlighting the benefit of incorporating both local
structure and external context in more challeng-
ing settings. These results suggest that method
selection can be guided by the characteristics of
the dataset and the specific forecasting task, with
PatchInstruct offering a robust default across most
conditions.

5.3 Dataset-Specific Analysis

For Weather forecasting, all methods substantially
outperform the baseline. Overall MSE values are
reduced from 0.009–0.0904 (baseline) to as low as
0.0014–0.043 (our methods).

PatchInstruct deliver substantial improvements,
reducing MSE from 21–68 (baseline) to 6.47–
20.05. However, Neighs and PatchInstruct+Neighs
perform poorly in this scenario.

Across both approaches, forecast accuracy gener-
ally decreases as the horizon increases, but this pat-
tern varies by dataset and method. For the Weather
dataset, the performance degradation with longer
horizons is less pronounced, especially for PatchIn-
struct+Neighs in multivariate settings.

5.4 Key Insights and Implications

The optimal forecasting method varies notably de-
pending on the characteristics of the dataset and the
forecasting horizon. For the Weather dataset, the
PatchInstruct and Neighs strategy yields the most

accurate results, effectively capturing the contex-
tual signals from related series. In contrast, for the
Traffic dataset, our main approach PatchInstruct
performs best, suggesting that more complex aug-
mentation may not always be beneficial in settings
with high variability or less correlated neighbors.

6 Conclusion

The analysis demonstrates that prompt-based meth-
ods generally outperform the S2IP-LLM baseline
across most forecasting scenarios, especially at
shorter horizons. The optimal method depends
significantly on the specific dataset and forecast
horizon, with PatchInstruct dominating in the ma-
jority of cases. This suggests that while prompt-
based strategies offer a lightweight and effective
alternative for time series forecasting.

7 Limitations

While our method achieves competitive accuracy
compared to the S2IP-LLM baseline, several limita-
tions warrant consideration. First, the evaluation is
limited to two benchmark datasets, which, though
diverse, may not fully represent the diversity of
real-world time series scenarios, such as irregu-
lar sampling or high-frequency patterns. Second,
the framework remains heavily contingent upon
carefully engineered prompts, introducing a labor-
intensive design process that risks overfitting to
specific tasks or datasets without systematic adap-
tation strategies. Future research should prioritize
expanding dataset coverage, and developing adap-
tive prompting mechanisms.

References
Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen,

Xiyuan Zhang, Pedro Mercado, Huibin Shen, Olek-
sandr Shchur, Syama Sundar Rangapuram, Sebas-
tian Pineda Arango, Shubham Kapoor, et al. 2024.
Chronos: Learning the language of time series. arXiv
preprint arXiv:2403.07815.

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister,
Yixiang Zheng, Wen Ye, and Yan Liu. 2024a. Tempo:
Prompt-based generative pre-trained transformer for
time series forecasting.

Defu Cao, Wen Ye, Yizhou Zhang, and Yan Liu. 2024b.
Timedit: General-purpose diffusion transformers
for time series foundation model. arXiv preprint
arXiv:2409.02322.

Ching Chang, Wei-Yao Wang, Wen-Chih Peng, and
Tien-Fu Chen. 2024. Llm4ts: Aligning pre-trained
llms as data-efficient time-series forecasters.

479

http://arxiv.org/abs/2310.04948
http://arxiv.org/abs/2310.04948
http://arxiv.org/abs/2310.04948
https://doi.org/10.48550/arXiv.2409.02322
https://doi.org/10.48550/arXiv.2409.02322
http://arxiv.org/abs/2308.08469
http://arxiv.org/abs/2308.08469

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G
Wilson. 2024. Large language models are zero-shot
time series forecasters. Advances in Neural Informa-
tion Processing Systems, 36.

Yuxuan Liang, Yue Wu, Sheng Wang, Xiaoyi Zhou,
Wang Yang, Rong Xu, Wen Ye, Weizhi Lin, Zhiguo
He, Zongyan Li, et al. 2024. Foundation models for
time series analysis: A tutorial and survey. arXiv
preprint arXiv:2403.14735.

Ruotong Liao, Xu Jia, Yangzhe Li, Yunpu Ma, and
Volker Tresp. 2024. Gentkg: Generative forecasting
on temporal knowledge graph with large language
models. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 4303–4317.

John A Miller, Mohammed Aldosari, Farah Saeed,
Nasid Habib Barna, Subas Rana, I Budak Arpinar,
and Ninghao Liu. 2024. A survey of deep learning
and foundation models for time series forecasting.
arXiv preprint arXiv:2401.13912.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and
Jayant Kalagnanam. 2022. A time series is worth
64 words: Long-term forecasting with transformers.
arXiv preprint arXiv:2211.14730.

Zijie Pan, Yushan Jiang, Sahil Garg, Anderson Schnei-
der, Yuriy Nevmyvaka, and Dongjin Song. 2024.
S2ip-llm: Semantic space informed prompt learning
with llm for time series forecasting.

Kashif Rasul, Arjun Ashok, Andrew Robert Williams,
Hena Ghonia, Rishika Bhagwatkar, Arian Kho-
rasani, Mohammad Javad Darvishi Bayazi, George
Adamopoulos, Roland Riachi, Nadhir Hassen, Marin
Biloš, Sahil Garg, Anderson Schneider, Nicolas Cha-
pados, Alexandre Drouin, Valentina Zantedeschi,
Yuriy Nevmyvaka, and Irina Rish. 2023. Lag-Llama:
Towards foundation models for probabilistic time
series forecasting. arXiv preprint arXiv:2310.08278.

Yilong Ren, Yue Chen, Shuai Liu, Boyue Wang,
Haiyang Yu, and Zhiyong Cui. 2024. Tpllm: A traf-
fic prediction framework based on pretrained large
language models.

Xiaofeng Shao, Soumya Ghosh, and Suhasini
Subba Rao. 2020. Time-series analysis and its appli-
cations in scientific disciplines. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physi-
cal and Engineering Sciences, 378(2174):20200209.

Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou
Ye, Qingsong Wen, and Ming Jin. 2024. Time-moe:
Billion-scale time series foundation models with mix-
ture of experts. arXiv preprint arXiv:2409.16040.

Hao Xue and Flora D. Salim. 2023. Promptcast: A
new prompt-based learning paradigm for time series
forecasting.

G Zerveas, S Jayaraman, D Patel, A Bhamidipaty, and
C Eickhoff. 2020. A transformer-based framework
for multivariate time series representation learning.
arxiv. arXiv preprint arXiv:2010.02803.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al.
2023. One fits all: Power general time series analysis
by pretrained lm. Advances in neural information
processing systems, 36:43322–43355.

Xinyu Zhou, Zhengyuan Ding, Shuo Ren, Yutao Chen,
Xinhui Huang, Jianhao Shi, and Wayne Xin Zhao.
2024. Ditto: A survey on fine-grained align-
ments of large language models. arXiv preprint
arXiv:2411.05793.

480

http://arxiv.org/abs/2403.05798
http://arxiv.org/abs/2403.05798
https://arxiv.org/abs/2310.08278
https://arxiv.org/abs/2310.08278
https://arxiv.org/abs/2310.08278
http://arxiv.org/abs/2403.02221
http://arxiv.org/abs/2403.02221
http://arxiv.org/abs/2403.02221
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1098/rsta.2020.0209
http://arxiv.org/abs/2210.08964
http://arxiv.org/abs/2210.08964
http://arxiv.org/abs/2210.08964
https://arxiv.org/abs/2411.05793
https://arxiv.org/abs/2411.05793

A Summary of Forecasting Results
Across different datasets

Table 5 represents evaluating five prompting strate-
gies—Basic, Non-Overlapping, STR Decompose,
Reverse Patches, and Meta Patches—across the
Weather and Traffic datasets, for horizons of 1, 3,
and 6. While STR Decompose occasionally shows
the lowest error for short-term predictions, Reverse
Patch Instruct consistently delivers strong perfor-
mance across all horizons and datasets. Notably,
in long-range forecasts (H=6), where prediction
becomes more challenging, Reverse Patch Instruct
achieves the lowest or near-lowest MAE and MSE
in both datasets, highlighting its stability and gen-
eralizability. Although it incurs a slightly higher
inference time than the most lightweight methods,
the trade-off is minimal when weighed against the
accuracy benefits. Overall, the results suggest that
Reverse Patch Instruct is the most effective and
reliable strategy, outperforming other variants in
terms of both robustness and predictive accuracy.

A.1 Basic PatchInstruct

The Basic PatchInstruct method employs overlap-
ping sliding windows (size=3, stride=1) to capture
local temporal patterns, followed by strategic se-
quence reversal to prioritize recent context. Unlike
conventional approaches that process time series
chronologically, this method reverses the generated
patches such that the most recent window [xt-2,
xt-1, xt] appears first in the token sequence. This
architectural innovation forces the model to attend
to immediate temporal patterns before historical
context, combining the local sensitivity of patch-
based methods (Nie et al., 2022) with explicit re-
cency prioritization. The approach demonstrates
particular efficacy in high-frequency electricity de-
mand forecasting where near-term consumption
patterns strongly influence subsequent values.

A.2 Non-Overlapping PatchInstruct

This variant utilizes non-overlapping windows
where both window size and stride equal the predic-
tion horizon (typically 3). The method partitions
the series into discrete blocks like [8.35, 8.36,
8.32] followed by [8.45, 8.35, 8.25], elimi-
nating redundant data coverage while maintaining
temporal progression. The design trades off some
contextual granularity for computational efficiency,
making it suitable for scenarios with pronounced
periodic patterns. By processing patches in nat-

ural order without sequence reversal, the method
preserves strict temporal causality, particularly ef-
fective when historical seasonal trends dominate
the forecasting signal.

A.3 STR Decompose PatchInstruct

Integrating seasonal-trend-residual decomposition,
this method first separates raw values into trend
(trend_t) and residual (residual_t = series_t -
trend_t) components. Each time step becomes a
composite token [Tt, Rt], enabling joint model-
ing of long-term trajectories and short-term fluctu-
ations. These dual-aspect tokens are organized into
overlapping windows:

[[T1,R1], [T2,R2], [T3,R3]]

preserving both local context and decomposition
characteristics. The architecture explicitly cap-
tures multi-scale temporal dynamics, particularly
beneficial for electricity demand series containing
both gradual load changes and sudden consumption
spikes.

A.4 Reverse Ordered Patches

Building on basic patch inversion, this method
systematically prioritizes recent context through
full sequence reversal of overlapping windows.
The architectural innovation forces models to pro-
cess the final patch [x94, x95, x96] first, im-
plementing a "recency-first" attention mechanism.
This structural bias proves particularly effective
for 10-minute interval forecasting where immedi-
ate consumption patterns (last 30 minutes) contain
stronger signals than older data. The approach
maintains patch-based efficiency while adding tem-
poral prioritization through simple sequence ma-
nipulation.

A.5 Meta Tokens Patches

This advanced variant enriches temporal represen-
tation through explicit time slot encoding. Each
value vt pairs with its absolute position in the
daily cycle (0-143 slots) as (vt; slotid), creating
hybrid tokens like (8.35;63). These meta-
tokens are windowed into overlapping patches:
[(v1;slot1), (v2;slot2), (v3;slot3)]
[(v2;slot2), (v3;slot3), (v4;slot4)]
. . .
[(v94;slot94),(v95;slot95),(v96;slot96)]
enabling joint learning of consumption patterns
and their absolute temporal positions. The fixed

481

Table 5: Ablation Study: Comparing Variants of Patch-Based Prompting Strategies Across Datasets.

Dataset Horizon Basic Non-Overlapping STR Decompose Reverse Patches Meta Patches

MAE MSE Time MAE MSE Time MAE MSE Time MAE MSE Time MAE MSE Time

WEATHER
1 0.014 0.0003 0.66 0.012 0.0002 1.6151 0.009 0.0001 1.2553 0.015 0.0005 1.2290 0.020 0.0007 0.7471
3 0.050 0.0045 0.989 0.055 0.0064 1.3580 0.045 0.0030 1.0737 0.053 0.0045 0.9732 0.067 0.0073 0.9269
6 0.078 0.0116 1.146 0.063 0.0079 3.9016 0.100 0.0230 1.1523 0.056 0.0070 1.5120 0.060 0.0074 0.9760

TRAFFIC
1 1.43 6.27 0.699 1.35 5.60 1.3404 1.34 4.17 1.2677 1.15 3.69 1.1221 1.32 5.35 1.3846
3 1.07 3.36 0.940 1.47 7.17 1.1910 0.99 2.53 1.1801 0.89 1.83 1.2018 0.94 2.38 1.1584
6 1.14 4.37 0.910 1.14 3.60 1.3010 1.79 8.71 1.5667 0.89 2.26 1.1137 1.03 2.95 1.1650

slot indices provide crucial circadian context,
helping disambiguate similar patterns occurring at
different times (e.g., morning vs. evening peaks).
This method adapts positional encoding strategies
from language models to time series, grounding
predictions in both value sequences and absolute
time references.

Basic PatchInstruct
You are a forecasting assistant that sees time
series data. The sequence represents the total
regional humidity measured every 10 minutes.
Task:
(1) Split the series into overlapping patches
with window size 3 and stride 1.
(2) Generate the patches in natural order,
then reverse the list so the most recent patch
appears first.
(3) Use these patch tokens to forecast the next
3 values.

Output format:
Patches:
[[latest_patch], ..., [oldest_patch]]

Prediction:
[y1, y2, y3]
No headings or extra words. Decimals ≤ 4
places; keep leading zeros (e.g., 0.8032).

482

Non-Overlapping PatchInstruct

Tokenize the given time-series data into
non-overlapping patches where a patch is a
contiguous subsequence of the time-series.
Ensure to use a fixed window size equal to the
Horizon size (e.g., 3) and the stride is equal to
the window size. This means that each patch
starts exactly where the previous one ends and
there will be no overlap. Output patches as
a list, in order, using square brackets. Each
patch becomes a token used to represent local
temporal patterns. Use the sequence of patches
to predict the next value(s). Below are a few
shot examples of non-overlapping patching:
Time series data: 8.35, 8.36, 8.32, 8.45, 8.35,
8.25, 8.20, 8.09, 8.13, 8.00, 7.94, 7.86

Patches generated based on Horizon (3), stride
= 3:
[8.35, 8.36, 8.32]
[8.45, 8.35, 8.25]
[8.20, 8.09, 8.13]
[8.00, 7.94, 7.86]

Prediction: [7.89, 7.97, 7.94]

STR Decompose PatchInstruct

You are a forecasting assistant that receives
STL-decomposed tokens.
Input:
- "series": 96 raw numbers (Humidity demand)
- "horizon" : 3 (fixed)
Task:
1. Decompose the series into
trendt and residualt = seriest − trendt
2. For each time-step create a pair token:
(trendt , residualt).
3. Split the 96 composite tokens into overlap-
ping patches (window = 3, stride = 1).
4. Use those patches to forecast the next 3 raw
values.

Output exactly
[[T1,R1], [T2,R2], [T3,R3]]
[[T2,R2], [T3,R3], [T4,R4]]
. . .
[[T94,R94], [T95,R95], [T96,R96]]

Prediction:
[y1, y2, y3]
No headings or extra words. Decimals ≤ 4
places; keep leading zeros (e.g., 0.8032).

483

Reverse Ordered Patches PatchInstruct
You are a forecasting assistant that sees time
series data. The sequence represents the total
regional humidity measured every 10 minutes.
Input:
- "series": 96 raw numbers (Humidity, 10-min
cadence) - "horizon" : 3 (fixed)
Task:
1. Split the series into overlapping patches
(window = 3, stride = 1).
2. Generate them in natural order, then reverse
the list so the most recent patch appears first.
3. Use those patch tokens to forecast the next
3 normalised values.

Output format:
Patches:
[[latest_patch],
... ,
[oldest_patch]]

Prediction:
[y1, y2, y3]
No headings or extra words. Decimals ≤ 4
places; keep leading zeros (e.g., 0.8032).

Meta tokens Patches PatchInstruct
You are a forecasting assistant that sees time
series data, where each datapoint is paired with
its 10-minute slot index within the day. The
sequence represents the total regional humidity
measured every 10 minutes.
Input:
- "series": 96 raw numbers (Humidity, 10-min
cadence) - "horizon" : 3 (fixed)
Time-slot index - A day is divided into 144
slots (0 → 143). - slot = floor((60*HH +
MM)/10). Example: 10:30 → 63 (because
10*60 + 30 = 630; 630/10 = 63).
Token format (value ; slotid)
slotid corresponds to the measurement’s clock
time
Task:
1. Convert the 96-point series into 96 two-
element tokens as above.
2. Split the token stream into overlapping
patches (window = 3, stride = 1).
3. Use those patches to forecast the next 3 raw
demand values.

Output format:
[(v1;slot1), (v2;slot2), (v3;slot3)]
[(v2;slot2), (v3;slot3), (v4;slot4)]
. . .
[(v94;slot94), (v95;slot95),
(v96;slot96)]

Prediction:
[y1, y2, y3]
No headings or extra words. Decimals ≤ 4
places; keep leading zeros (e.g., 0.8032).

484

