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Abstract

Understanding temporal information is es-
sential for natural language understanding,
yet both humans and large language models
(LLMs) face challenges when narratives mix
absolute and relative time expressions. In
this study, we systematically evaluate frontier
LLMs on temporal event ordering tasks and
compare their performance against human base-
lines under absolute-time (AT) and mixed-time
(MT) conditions. Using a recently constructed
temporal reasoning dataset 1, we analyze repre-
sentative models including GPT-4, DeepSeek
Reasoner, and QwQ-32B.

Our findings reveal three key insights: (1) Fron-
tier LLMs can achieve near-human Kendall’s ω
value in AT settings, with GPT-4 and DeepSeek
Reasoner performing competitively. (2) In
MT scenarios, human performance drops more
sharply than some LLMs, suggesting that fron-
tier models can maintain stronger consistency
in long-text temporal reasoning with mixed
time expressions. (3) Targeted probing with
time masking confirms that LLMs rely heavily
on explicit temporal anchors, showing fragility
when such cues are removed.

These results demonstrate that temporal rea-
soning remains a core challenge for both hu-
mans and LLMs, while also revealing condi-
tions under which models can rival—or even
approach—human performance. Our analysis
provides actionable insights for improving the
interpretability and robustness of LLMs in tem-
porally grounded language tasks.

1 Introduction

Temporal reasoning is a fundamental aspect of lan-
guage comprehension, enabling interlocutors to re-
construct event sequences and interpret narratives
in context. In natural discourse, however, temporal
information is rarely expressed in a fully explicit

1https://github.com/fantastic-Feifei/MTS-benchmark

or linear fashion. Narratives across languages fre-
quently weave together absolute time references
(e.g., in 1945), relative expressions (e.g., two years
later), and event-anchored cues (e.g., shortly after
the war), producing timelines that are non-linear
and partially implicit. This mixture poses chal-
lenges not only for computational models, but also
for human readers—particularly when temporal
cues are sparse, distributed, or dependent on dis-
course structure.

Recent advances in LLMs have shown promising
results in temporal reasoning tasks. Yet, most eval-
uations have been conducted in settings dominated
by explicit temporal anchors or simplified tempo-
ral relations. Such conditions do not fully reflect
the complexity of real-world narratives, including
those found in historical accounts, biographies, and
cross-cultural storytelling, where temporal mark-
ers are often underspecified or require inferential
bridging. However, existing benchmarks rarely cap-
ture this mixture of absolute and relative time, and
few studies have systematically tested how LLMs
behave under these more naturalistic, mixed-time
conditions (Chu et al., 2023; Wang and Zhao, 2023;
Tan et al., 2023). Moreover, while recent studies
have identified anchoring biases in LLMs (Huang
et al., 2025) and systematic weaknesses in handling
relative temporal expressions (Chen et al., 2025),
little is known about whether current evaluation
methods can reveal the sources of model errors
more comprehensively—specifically, whether they
arise from difficulties in anchoring absolute refer-
ences, integrating relative cues, or bridging across
discourse gaps. From a computational linguistics
perspective, understanding how models—and hu-
mans—navigate such mixed-time conditions is key
to developing systems that are both robust and in-
terpretable across languages.

Building on a recently introduced mixed-time
temporal reasoning benchmark (Sun et al., 2025),
this study makes three contributions:
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• Human–model comparative evaluation: We
establish a human baseline for temporal event
ordering under absolute-time (AT) and mixed-
time (MT) conditions, quantifying the inher-
ent difficulty and ambiguity of hybrid-time
narratives.

• Probing temporal robustness: We conduct tar-
geted masking experiments that selectively re-
move explicit year expressions, revealing the
extent to which LLMs rely on surface-level
temporal anchors.

Our findings show that while frontier LLMs can
match or even exceed human performance in ex-
plicit AT settings, both humans and models struggle
when temporal anchors are obscured or replaced
with relative expressions. Crucially, masking a
single year often triggers a collapse in model order-
ing accuracy, underscoring the importance of con-
text integration beyond explicit timestamps. These
results have direct implications for the design of
temporally aware NLP systems and contribute to
the broader understanding of how temporal reason-
ing operates across varied linguistic and narrative
structures.

2 Related Work

Temporal Reasoning in NLP Temporal reason-
ing has been a long-standing challenge in natural
language processing, involving tasks such as tem-
poral expression normalization (Verhagen et al.,
2010), event ordering (Chambers and Jurafsky,
2008; Ning et al., 2019), and temporal question
answering (Khot et al., 2020; Chen et al., 2021).
Most existing benchmarks, including TimeBank,
MATRES, and TORQUE, primarily focus on sce-
narios with explicit absolute time anchors or sim-
plified temporal relations. However, real-world nar-
ratives often exhibit mixed temporal structures that
combine absolute, relative, and event-anchored ex-
pressions, forming non-linear timelines. Deriving a
coherent global event order from such narratives re-
mains challenging, especially when temporal cues
are implicit or distributed across long contexts.

Large Language Models for Temporal Under-
standing Recent research has explored the ability
of LLMs to perform temporal reasoning in com-
plex narratives. Although state-of-the-art LLMs
such as GPT-4 and DeepSeek demonstrate strong
capabilities in general reasoning tasks, their per-
formance often degrades on event ordering when

explicit date cues are removed or when relative
temporal expressions dominate (Xiong et al., 2024;
Ding and Wang, 2025; Yuan et al., 2024). LLMs
typically rely on surface-level temporal signals to
achieve partial ordering consistency, but they strug-
gle with non-linear or mixed time settings, where
reasoning requires integrating both explicit and im-
plicit temporal cues. This gap motivates the need
for systematic evaluations of LLM temporal robust-
ness under both AT and MT conditions.

Probing Methods for Model Reasoning Prob-
ing techniques offer a principled approach for inves-
tigating the internal reasoning behavior of LLMs
(Belinkov and Glass, 2019; Elazar et al., 2021). In
the context of temporal reasoning, one widely-used
strategy is to mask time expressions—whether ab-
solute or relative—during inference or intermediate
training, and then evaluate the model’s ability to
reconstruct event order purely from context.

For example, Cole et al. 2023 introduce Tem-
poral Span Masking, where temporal expressions
are selectively masked during intermediate training
to enhance performance on downstream temporal
tasks. Similarly, the TempoBERT model (Rosin
et al., 2021) employs explicit time masking incor-
porated into the model’s inputs, boosting accuracy
in temporal prediction tasks (Rosin et al., 2022).
More recently, Liu et al., 2025 propose the Time-
R1 framework, which includes a “masked time
entity completion” subtask—directly analogous to
our design—in its multi-stage training to assess the
model’s reliance on narrative context rather than
explicit temporal markers.

Our method similarly adopts a targeted masking
strategy by selectively removing absolute or rela-
tive time expressions and evaluating whether mod-
els can still recover the correct event sequence. Un-
like prior masking-based probing methods that pri-
marily evaluate lexical recovery, our design masks
absolute time anchors (e.g., “in 1995”), which are
crucial chronological cues in narrative texts. This
allows us to directly test whether models can main-
tain temporal coherence and reason based on com-
monsense or contextual inference when explicit
anchors are missing. Such a probing setup en-
ables fine-grained analysis of model reliance on
temporal cues, highlights differences between hu-
man and model reasoning, and supports controlled
experiments assessing temporal robustness in long-
context event ordering tasks.
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3 Dataset and Task Setup

3.1 Dataset Overview

Statistic Value

Total passages 4,824
Avg. events per passage 7.99
Avg. relative per passage 4.53
Avg. absolute per passage 3.46
Relative time ratio (relative / all) 56.73%

Table 1: Full dataset statistics, showing event density
and distribution of absolute vs. relative time expres-
sions.

We conducted our experiments on the hybrid-
time temporal reasoning dataset, which contains
4,824 Wikipedia-style biographical passages (Ta-
ble 1) with time-stamped events and various tem-
poral expressions (Table 2). The dataset can be
accessed from our GitHub repository (linked in the
abstract).

Terminology

Global event refers to an event’s position in the
complete chronological sequence of a passage (e.g.,
1960 → 1980 → 1990 → 2000).
Local context denotes the immediately surround-
ing sentences that help determine an event’s posi-
tion.
Temporal cues are explicit or implicit indicators
of time, which in our dataset include: Absolute
(e.g., “in 1945”), explicit chronological anchors;
Relative (e.g., “two years later”), requiring contex-
tual inference; Event-anchored (e.g., “the end of
47th Olympics”), dependent on prior events.

This mixed-time design reflects natural narratives
where explicit dates are interwoven with relative
and discourse-dependent cues, requiring models
to combine surface-level anchors with contextual
reasoning. The coexistence of multiple expression
types enables controlled comparisons of reasoning
strategies and fine-grained robustness analysis.

Each passage is annotated with normalized tem-
poral values and aligned to a global event sequence,
supporting two evaluation settings: AT and MT.
This design probes model sensitivity to explicit vs.
implicit temporal cues and offers reusability for
cross-linguistic evaluation, temporal QA, timeline
extraction, and discourse analysis.

3.2 Dataset Sampling

To facilitate human annotation and maintain clar-
ity in subsequent analysis, we sampled 100 pas-
sages from the full 4,824-instance dataset (Table 3),
each containing between 4 and 7 event sentences.
This range strikes a balance between narrative rich-
ness and human annotator feasibility. Our sam-
pling decision was also guided by evidence from
cognitive psychology showing that human compre-
hension of long, complex texts is constrained by
working memory and processing limitations (Sug-
awara et al., 2020; Kalyuga, 2011). Specifically,
when discourse length increases, readers must con-
currently integrate earlier information while pro-
cessing new content, which strains limited memory
resources. Therefore, to ensure high-quality human
annotation in our probing tasks, we limit the sam-
ple size to 100 passages while retaining narrative
richness. As later confirmed in Section 4.1, hu-
mans exhibit lower consistency than models when
reasoning over longer passages.

The selected subset preserves a diverse mixture
of time expressions (absolute, relative) and event
ordering structures. All 100 passages were indepen-
dently annotated by three trained annotators and
subsequently used for both human-model compari-
son and fine-grained probing experiments.

All annotators are domain experts in Information
Science, with research backgrounds in machine
learning and strong proficiency in English. This ex-
pertise ensures both familiarity with the technical
aspects of the task and the linguistic competence re-
quired to process the biographical passages, provid-
ing a reliable baseline for comparison with model
predictions. In addition, one of the annotators is
the co-author of this work.

3.3 Task Definition

We define a sentence ordering task that requires
models to recover the global temporal order of
events described in natural language. Each input
consists of a set of four event sentences sampled
from a temporally rich passage. The model is
prompted to output the correct chronological or-
der of sentence indices (e.g., “1,3,2,4”).

We evaluate model performance under two set-
tings:

• Absolute-Time (AT): All original absolute
time expressions (e.g., “in 1945”) are pre-
served.
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Table 2: Examples of temporal expressions in our dataset, categorized by expression type: Absolute, Relative, and
Event-Anchored.

Type (Temporal Expression) Example

Absolute “in 1995”, “on September, 1920”
Relative “three years later”, “shortly after the Expo”
Event-Anchored “the end of 47th Olympics”, “during the Great Depression”

Setting AT MT

#Samples 30 70
Avg Events 4.4 4.5
High Granularity (%) 53.3 42.9
Low Granularity (%) 46.7 57.1
Abs : Rel 53 : 47 43 : 57

Table 3: Statistics of the 100-sample subset for human
annotation and probing experiments. This subset main-
tains temporal diversity while ensuring cognitive fea-
sibility for human reasoning. Avg Events denotes the
average number of annotated events per passage. High

Granularity = expressions specifying year+month+day

and year+month, and Low Granularity = expressions
specifying only the year.

• Mixed-Time (MT): Some absolute expres-
sions are rewritten into relative forms (e.g.,
“eight years later”) or event-anchored refer-
ences (e.g., “August 2024” rewritten as “the
end of 47th Olympics”) to simulate hybrid
time contexts.

To further probe model dependency on explicit
time anchors, we introduce a masked-time variant
of this task, in which one temporal expression is
replaced with a [MASK] token (see Section 3.5).
Models must still recover the correct sentence or-
der, revealing their temporal inference capabilities
under partial information.

3.4 Model Selection
To evaluate temporal reasoning capabilities across
a diverse range of model families and architectural
scales, we selected the following representative
large language models for analysis:
GPT-4 (OpenAI) (Achiam et al., 2023): A
frontier proprietary model known for its strong
general reasoning and instruction-following
abilities. It serves as a high-performance reference
in our evaluations.
DeepSeek-Reasoner (DeepSeek) (Guo et al.,
2025): A reasoning-optimized model designed for

multi-hop and structured inference tasks. It
represents a model explicitly trained with a focus
on reasoning capabilities.
DeepSeek-v3 (DeepSeek) (Liu et al., 2024): A
general-purpose instruction-tuned model from the
same family, included to contrast with the
reasoning-augmented variant.
QwQ-32B (Alibaba) (Team, 2025): A large-scale
open-source model with competitive performance
in general benchmarks.
Qwen2.5-7B (Alibaba) (Yang et al., 2024): A
strong open-source base model with relatively
smaller scale (7B), chosen to assess how compact
models perform under temporal reasoning tasks.

These models span different training paradigms
(instruction tuning, reasoning augmentation), sizes
(7B–32B), and sources (open-source vs. propri-
etary), enabling a broad comparison of temporal
reasoning performance across architectural and
methodological dimensions.

3.5 Probing Design
Masked Time Prediction
To further examine the temporal reasoning ability
of language models, we design a masked time pre-

diction task that targets a model’s capacity to infer
missing temporal information from surrounding
context (Table 4).

For each passage in both the AT and MT settings,
we randomly select a single sentence containing an
absolute time expression (e.g., “1945”) and mask
only the year component with a [MASK] token. The
remainder of the sentence and surrounding context
are preserved, enabling us to isolate the model’s
ability to recover or approximate the masked tem-
poral anchor based on event order and discourse-
level clues. In the MT setting, the masked sentence
may contain a rewritten relative reference (e.g.,
“eight years later”), making the task more reliant
on understanding inter-event relations rather than
directly reading explicit anchors.

We deliberately mask only one temporal expres-
sion per passage for three reasons:
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1. Experimental control: Masking a single an-
chor allows us to attribute any performance
change directly to the removal of that cue,
avoiding confounding effects from masking
multiple references simultaneously.

2. Linguistic realism: In naturally occurring
narratives, explicit temporal anchors are often
sparse but not entirely absent; removing just
one simulates this partial loss of explicit cues.

3. Interpretability: With only one masked ex-
pression, we can more clearly trace whether
the missing anchor disrupts global ordering,
making error patterns easier to analyze.

Rather than evaluating the exact lexical recon-
struction of the masked expression—which may ad-
mit multiple valid rewrites—we assess the model’s
ability to recover the correct global event order
when the masked sentence is included. This design
enables us to measure whether the removal of a
key temporal anchor significantly degrades down-
stream temporal reasoning, thereby revealing the
extent to which models depend on explicit time
cues versus contextual inference.

Prompt Construction
To assess whether language models can preserve
temporal reasoning capabilities when explicit time
anchors are partially removed, we formulate a
masked time prediction task as a sentence reorder-
ing problem. Each instance consists of four event
sentences, one of which has its year expression
masked (e.g., in 1997” → in [MASK]”).

To ensure consistent and well-structured outputs
across models, we adopt a one-shot prompting strat-
egy. Preliminary experiments in the zero-shot set-
ting showed that only GPT-4 reliably followed the
expected output format (i.e., returning a comma-
separated list of sentence indices such as “1,2,3,4”).
In contrast, open-source models such as DeepSeek
and Qwen often produced verbose, unstructured, or
incomplete responses. To mitigate this, we include
a concrete in-context example at the beginning of
each prompt.

Each prompt is composed of two parts: a worked
example followed by a test instance. Both follow
the same structure—numbered sentences and an in-
struction asking the model to reorder them chrono-
logically using index notation.

This design allows us to probe the impact of
masking a single temporal anchor on the model’s

ability to infer global event order. By applying this
setup to both AT and MT settings, we can evaluate
the degree to which models rely on explicit time
expressions versus contextual temporal reasoning.

A detailed example of our prompt format is pro-
vided in Appendix A.

3.6 Evaluation Metrics
To comprehensively assess the temporal reason-
ing capability of language models, we employ the
following evaluation metrics:

• Exact Match (EM): For event ordering tasks,
EM is a strict metric that checks whether the
predicted event sequence exactly matches the
gold order. Unlike rank-based correlation
measures (e.g., Kendall’s ω ), which provide
partial credit for partially correct rankings,
EM only assigns credit when the entire se-
quence is perfectly correct.

• Kendall’s ω : For sentence reordering tasks,
we compute Kendall’s ω rank correlation
coefficient between the predicted and gold-
standard sentence orders. This metric captures
the pairwise consistency of temporal relation-
ships between events, providing a gradient of
correctness even when the full order is not
exact.

In addition to aggregate scores, we conduct fine-
grained analyses along the following dimensions:

• Time Expression Type: We compare model
performance on absolute (e.g., “in 1982”) vs.
relative (e.g., “eight years later”) expressions,
to evaluate their sensitivity to different tempo-
ral formats.

• Time Granularity: We define granularity as
the level of specificity expressed in temporal
anchors (year, year+month, year+month+day).
This is distinct from the type of temporal ex-
pression (e.g., absolute vs. relative vs. event-
anchored), which we treat as a separate factor.

• Context Length: We investigate whether the
number of surrounding events in a passage in-
fluences the model’s ability to infer temporal
relations, shedding light on context sensitivity.

Together, these metrics provide a multi-faceted
view of model behavior, balancing surface-form
fidelity with structural reasoning competence.
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Original Context (Before) Masked Context

He graduated in 1998 and started working the
following year.

He graduated in [MASK] and started working
the following year.

He became president in 2009 after a decade in
parliament.

He became president in [MASK] after a decade
in parliament.

She left the ministry in March 2003 and re-
turned briefly in 2005.

She left the ministry in [MASK] and returned
briefly in 2005.

Table 4: Examples of original and masked contexts used in the probing task.

Figure 1: Model vs. Human Agreement under AT and MT settings. Stacked bar plots show the distribution of
prediction outcomes for each model: Both correct (green), Human only correct (blue), Model only correct (purple),
and Both wrong (orange). (a) Absolute Time (AT): Models such as DEEPSEEK-REASONER, GPT-4, and QWQ-32B
achieve the highest human–model overlap, while DEEPSEEK-V3 and QWEN2.5-7B show more human-only correct
cases, indicating weaker recovery of masked time expressions. (b) Mixed Time (MT): All models see a sharp drop
in Both correct counts, with increased Model only correct and Both wrong cases. The gap between human and
model judgments widens under ambiguous or relative time cues, especially for QWEN2.5-7B and DEEPSEEK-V3.

4 Results and Analysis

4.1 Overall Model Performance
To establish a performance baseline, we first evalu-
ate six language models on the temporal ordering
task under two settings: AT and MT, using two
metrics: exact match (EM) accuracy and Kendall’s
ω rank correlation. Table 5 summarizes the results
for four representative models and three human
annotators.

Performance under AT Under the AT setting,
all models achieve relatively high accuracy, with
DEEPSEEK-REASONER and QWQ-32B both reach-
ing an EM score of 0.63. GPT-4 also performs
well with an EM of 0.60 and the highest Kendall’s
ω of 0.69, suggesting strong global ordering con-
sistency. Compared to human annotators, most
models perform on par or slightly better in EM,
though ANNOTATOR 2 achieves the highest ω score
of 0.73, indicating the strongest ordering alignment

with gold labels.

Reliable Yet Nuanced: Human Baseline Under
AT Interestingly, all three annotators achieved an
identical exact match (EM) score of 0.56 under the
AT setting, despite differing moderately in their
Kendall’s ω values. This suggests that while their
full-sequence predictions aligned with the gold or-
der in the same proportion of cases, the extent to
which their orderings agreed with the gold ranking
varied. Such consistency in EM across annota-
tors reinforces the reliability of the human baseline
under AT, and highlights that partial sequence dis-
agreements (captured by ω ) may still occur even
when EM scores coincide.

Performance under MT The MT setting intro-
duces a pronounced performance drop for both
human annotators and models. While DEEPSEEK-
REASONER and QWQ-32B retain relatively strong
performance (EM = 0.60 and 0.59, respectively),
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other models such as DEEPSEEK-V3 and GPT-4
show substantial degradation (EM = 0.41 and 0.42).
Human performance declines even more notice-
ably: all three annotators exhibit reduced EM and
Kendall’s ω scores, with ANNOTATOR 1 dropping
to an EM of just 0.30.

Humans Struggle, Models Endure under MT
This gap between human and model performance
may be attributed to the increased cognitive load
imposed by long passages and temporally ambigu-
ous references. Unlike the AT setting—where
time expressions are explicit and reasoning is more
straightforward—the MT condition requires inter-
preting implicit and relative temporal cues, of-
ten embedded within complex narratives. These
challenges appear to hinder human consistency,
whereas models like DEEPSEEK-REASONER and
QWQ-32B demonstrate notable robustness, suggest-
ing their superior ability to track and resolve tem-
poral structure in long-context settings.

GPT-4 Mimics Human Temporal Reasoning Pat-
terns Among all evaluated models, GPT-4 con-
sistently demonstrated performance most closely
aligned with that of human annotators. In the AT
setting, its Kendall’s ω of 0.69 is only marginally
above the human range (0.62–0.73), and in the MT
setting, its Kendall’s ω of 0.46 remains within the
variance of human annotators (0.32–0.50) (Table 5).
This closeness in rank correlation suggests not only
comparable accuracy but also similar ordering ten-
dencies, indicating a reasoning style that aligns
with human temporal judgments.

We hypothesize that GPT-4’s relatively human-
like behavior may stem from its training paradigm.
Unlike open-source models such as DEEPSEEK-
REASONER and QWQ-32B, which are often trained
with strong emphasis on instruction tuning and
retrieval-augmented generation, GPT-4 incorpo-
rates extensive reinforcement learning from human
feedback (RLHF). This iterative alignment process
likely encourages the model to mimic human pref-
erences and inference styles, especially in ambigu-
ous or underspecified contexts.

In contrast, DEEPSEEK-REASONER and QWQ-
32B exhibit more decisive but less human-
consistent behavior. Their superior performance
under the MT condition suggests stronger capabili-
ties in long-context tracking and structured reason-
ing, yet their predictions often diverge from human
tendencies, possibly due to a more pattern-driven or
memorization-based inference mechanism shaped

Setting Model EM Kendall’s ω

AT

DEEPSEEK-REASONER 0.63 0.65
DEEPSEEK-V3 0.46 0.47
GPT-4 0.60 0.69
GPT-3.5-TURBO 0.13 0.30
QWEN2.5-7B 0.03 0.12
QWQ-32B 0.63 0.66
Annotator 1 0.56 0.62
Annotator 2 0.56 0.73
Annotator 3 0.56 0.63

MT

DEEPSEEK-REASONER 0.60 0.65
DEEPSEEK-V3 0.41 0.49
GPT-4 0.42 0.46
GPT-3.5-TURBO 0.16 0.08
QWEN2.5-7B 0.15 0.20
QWQ-32B 0.59 0.65
Annotator 1 0.30 0.32
Annotator 2 0.34 0.43
Annotator 3 0.42 0.50

Table 5: Overall model and human performance on
event ordering under AT and MT conditions. EM =
exact match accuracy; Kendall’s ω measures rank corre-
lation between predicted and gold orders.

by large-scale instruction-following pretraining.
Taken together, these findings suggest that GPT-

4, while not always achieving the highest EM
scores, may employ a reasoning process that is
cognitively closer to human temporal understand-
ing—a property valuable for downstream appli-
cations requiring interpretability or human-in-the-
loop decision making.

Performance of Qwen2.5-7B and GPT-3.5-
Turbo Both QWEN2.5-7B and GPT-3.5 un-
derperform compared to larger frontier models.
While QWEN2.5-7B yields near-random orderings
(AT: EM=0.03, ω=0.12; MT: EM=0.15, ω=0.20),
GPT-3.5 achieves slightly higher consistency (AT:
EM=0.13, ω=0.30), yet still lags behind human an-
notators and fails to scale under MT (EM=0.16,
ω=0.08). These results suggest that both models
struggle with global event ordering, albeit for dif-
ferent reasons: QWEN2.5-7B appears particularly
weak in leveraging absolute anchors, while GPT-
3.5 shows instability in mixed-time reasoning.

Due to its consistently poor performance across
both conditions, we exclude QWEN2.5-7B,GPT-
3.5-TURBO, and DEEPSEEK-V3 from subsequent
probing analyses.

4.2 Human-Model Agreement Patterns
To better understand the consistency between
model predictions and human judgments, we ana-
lyze agreement patterns across six representative
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models under both AT and MT conditions. Each in-
stance in our dataset was independently annotated
by three human annotators. To enable consistent
comparison with model outputs, we adopted a ma-
jority vote strategy to determine the gold-standard
human response for each instance.

Figure 1 presents stacked bar plots that catego-
rize each prediction outcome into one of four types:
Both correct, Human only correct, Model only cor-

rect, and Both wrong, based on comparison with
the majority-vote human answer.

In the AT setting (Figure 1a), most mod-
els—including DEEPSEEK-REASONER, GPT-4, and
QWQ-32B—achieve high agreement with human
annotators, with a substantial proportion of cases
falling into the Both correct category. However,
DEEPSEEK-V3 and QWEN2.5-7B exhibit relatively
higher numbers of Human only correct cases, sug-
gesting challenges in precise recovery of masked
time expressions.

In contrast, under the MT setting (Figure 1b),
all models show performance degradation. The
number of Both correct cases drops notably, while
Model only correct and Both wrong instances in-
crease. This trend highlights the difficulty of tempo-
ral reasoning in contexts with ambiguous or relative
time expressions. Models such as QWEN2.5-7B
and DEEPSEEK-V3 especially struggle, with many
instances correctly identified by humans but missed
by the models.

These findings underscore the value of probing
model behavior across both structured and ambigu-
ous temporal settings, as performance under abso-
lute time does not necessarily generalize to more
naturalistic, mixed-time scenarios.

Quantifying Human–Model Alignment To
complement the categorical outcome analysis, we
further quantify the degree of alignment between
models and human annotators using Kendall’s ω .
In addition to correlations with gold orders (Sec-
tion 4.1), we directly compute the correlation be-
tween each model prediction and each individual
annotator’s sequence, averaging across annotators.
This provides a finer-grained measure of human–
model agreement beyond majority-vote correct-
ness.

Table 6 summarizes the results under both AT
and MT conditions. Table 6a reports Kendall’s
ω for model–gold and human–gold comparisons,
while Table 6b presents direct model–human corre-
lations. Several patterns emerge: (1) frontier mod-

els such as DEEPSEEK-REASONER, GPT-4, and
QWQ-32B show strong alignment with both gold
orders and human judgments in the AT setting;
(2) QWEN2.5-7B consistently lags behind, partic-
ularly in the MT condition, reflecting its difficulty
with ambiguous or relative time references; and (3)
across most models, direct model–human correla-
tions are slightly lower than model–gold ones (e.g.,
GPT-4, DEEPSEEK-V3), highlighting that high ac-
curacy with respect to gold standards does not al-
ways translate into close alignment with human
reasoning.

System AT ω MT ω

DEEPSEEK-REASONER 0.84 0.77
QWQ-32B 0.82 0.76
GPT-4 0.75 0.65
DEEPSEEK-V3 0.68 0.68
GPT-3.5 0.51 0.45
QWEN2.5-7B 0.37 0.33

Annotator 1 0.80 0.55
Annotator 2 0.75 0.62
Annotator 3 0.83 0.67

(a) Model–Gold and Human–Gold Kendall’s ω

System AT ω MT ω

DEEPSEEK-REASONER 0.84 0.59
QWQ-32B 0.83 0.58
GPT-4 0.72 0.46
DEEPSEEK-V3 0.71 0.53
GPT-3.5 0.52 0.39
QWEN2.5-7B 0.40 0.28

(b) Direct Model–Human Kendall’s ω

Table 6: Human–model agreement measured by
Kendall’s ω across AT and MT settings.

4.3 Probing Model Temporal Inference via
Time Masking

To investigate whether LLMs can maintain tem-
poral reasoning ability when explicit time anchors
are removed, we conduct a masked time prediction
experiment in both AT and MT settings. In each
instance, a single year expression is masked in one
of the event sentences, and models are prompted
to output the correct chronological order of the
events (as described in Section 3.5). This setup
isolates the model’s reliance on explicit temporal
cues and evaluates its ability to infer event order
from context alone.

Results. Table 7 summarizes model performance
under the masked time probing task. In the AT
setting, GPT-4 achieves an Exact Match (EM) of
only 0.033, with a negative average Kendall’s ω
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of -0.059, indicating that its predicted orders are
slightly worse than random. QwQ-32B performs
comparably, while DeepSeek-Reasoner completely
fails (EM = 0). The MT setting is even more chal-
lenging: all models fail to recover any correct or-
ders (EM = 0), and Kendall’s ω approaches zero or
negative, reflecting near-random or even inversely
correlated rankings.

Setting Model EM Avg Kendall ω

AT
GPT-4 0.033 -0.059

QwQ-32B 0.033 -0.056
DeepSeek-Reasoner 0.000 -0.006

MT
GPT-4 0.000 -0.026

QwQ-32B 0.000 -0.050
DeepSeek-Reasoner 0.000 0.015

Table 7: Performance of LLMs under the masked time
probing task. EM denotes the fraction of exact matches
to the gold event order; Kendall’s ω measures correlation
between predicted and gold orders.

Analysis and Insights.
Our probing results reveal three key insights:
1. Strong reliance on explicit temporal an-

chors. Masking just a single year drastically de-
grades performance, indicating that models primar-
ily leverage surface-level time expressions rather
than robust event reasoning.

2. Failure to generalize in mixed-time nar-
ratives. In MT settings, where relative or vague
temporal expressions dominate, masking any re-
maining anchor causes complete failure, with EM
= 0 for all models.

3. Temporal reasoning collapses without ex-
plicit cues. Negative or near-zero Kendall’s ω
scores suggest that model predictions are effec-
tively random, and sometimes even inversely corre-
lated with the true order.

These findings demonstrate that current LLMs
exhibit shallow temporal reasoning, heavily depen-
dent on explicit timestamps. Our probing method-
ology thus exposes a critical weakness in LLM
temporal inference, highlighting the necessity for
models that can robustly infer event order in par-
tially observed or naturally vague timelines.

5 Conclusion

This study examined the temporal reasoning abil-
ities of frontier LLMs and human annotators un-
der both AT and MT conditions, using a hybrid-
time dataset that integrates absolute, relative, and

event-anchored expressions. By combining con-
trolled evaluation with a masked-time probing task,
we identified clear performance gaps and reason-
ing patterns: while frontier models can approach
human-level ordering accuracy in AT settings, both
humans and models struggle when explicit tempo-
ral anchors are reduced or removed. The masking
experiments further revealed a strong dependence
on explicit cues, with ordering accuracy collapsing
when even a single anchor is missing.

From a broader perspective, these findings high-
light that temporal reasoning in naturally occurring
narratives is shaped by more than surface-form date
recognition: it requires resolving vague relative ex-
pressions, reconciling narrative sequencing with
chronological order, and integrating long-distance
discourse anchors. The hybrid-time design adopted
here provides a reusable, language-agnostic frame-
work for diagnosing such challenges, and can be
readily adapted to other languages and narrative
genres.

Future work will expand the dataset to multi-
lingual settings, enabling cross-linguistic compar-
isons of temporal reasoning strategies. We also
aim to explore model architectures and training
objectives that promote robust integration of ex-
plicit and implicit temporal cues, moving towards
temporally aware systems capable of handling the
complexities of real-world discourse.
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Limitations

Our study has several limitations. First, the prob-
ing experiments are conducted on a small 100-
sample subset to ensure human annotation feasi-
bility and interpretability. While this allows for
detailed human-model comparison, it limits the
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statistical generalizability of our findings to larger-
scale temporal reasoning tasks.

Second, our current probing approach masks
only one time expression per passage and evalu-
ates its impact on event ordering. This simplified
design highlights model reliance on explicit tempo-
ral cues but does not fully capture the complexity
of real-world narratives with multiple missing or
ambiguous temporal anchors.

Third, our evaluation focuses on surface-level or-
dering accuracy (EM and Kendall’s ω ) and does not
analyze intermediate reasoning steps or latent tem-
poral representations. As a result, our conclusions
about model reasoning are inferential and may not
fully reveal the internal mechanisms driving model
predictions.

Fourth, although we include multiple model
families (GPT-4, DeepSeek, QwQ), our selection
omits smaller or domain-specialized models, and
we exclude QWEN2.5-7B, GPT-3.5-TURBO and
DEEPSEEK-V3 from probing due to its low base-
line performance.

Fifth, a potential concern is that our passages
originate from Wikipedia biographies, raising the
possibility that models may have partially memo-
rized specific dates or event sequences during pre-
training. To mitigate this risk, during dataset con-
struction, we performed data cleaning and random-
ization procedures to reduce direct overlap with
seen text (details described in our companion work
(Sun et al., 2025)). In particular, events were ex-
tracted and re-ordered into new narrative contexts,
such that models could not rely on surface recall of
document-level sequences.

Nevertheless, we acknowledge that memoriza-
tion cannot be entirely excluded, as noted in our
Limitations section. Importantly, our evaluation re-
quires models to reconstruct global event orders
across passages: even if individual dates were
known, successful performance hinges on reason-
ing over relative and hybrid time references rather
than verbatim recall.

Finally, our design of the Masked-Time probing
task primarily aims to stress-test model robustness
when crucial temporal anchors are missing. As the
masked expression may admit multiple plausible
human interpretations, constructing a unique hu-
man “gold” reference would be problematic. There-
fore, we did not collect human annotations for this
setting. We acknowledge this as a limitation, since
direct human-model comparison could further illu-
minate the gap in reasoning strategies.

Future work should expand the model coverage
and explore more fine-grained temporal reasoning
diagnostics.
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A Prompt Example for Masked Time
Prediction

Below is a representative one-shot prompt used in
our masked time prediction (sentence reordering)
experiment. The example demonstrates the format
provided to language models during inference:

Here is an example: Input

Sentences:

1. He was born in 1960.

2. He graduated in 1980.

3. He joined IBM in 1990.

4. He became a manager in 2000.

Answer: 1,2,3,4

Now reorder the following

sentences in chronological order.

Respond only with the sentence

indices in the correct order,

separated by commas.

Input Sentences:

A campaign, called Save the Ampelmän-
nchen, was launched by the public and
Ampelmännchen enthusiasts, resulting in
the preservation of Peglau’s Ampelmän-
nchen in [MASK].

Karl Peglau died in Berlin, Germany, on
29 November 2009, at the age of 82.

Karl Peglau was a German traffic psy-
chologist who invented the iconic Am-
pelmännchen traffic symbols used in the
former East Germany in 1961.

Peglau designed the glass human figures
for the stop (red) and go (green) lights
on the traffic signal in 1961, which
became known as the Ampelmännchen.

Answer: ___
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In this example, the first sentence contains a
masked year expression. The model must infer
its correct position within the global event time-

line—the ordered sequence of events in the passage,
whether represented as explicit dates (e.g., 1960

→ 1980 → 1990 → 2000) or as major life mile-
stones (e.g., birth → graduation → career start →
promotion)—by leveraging both local context and
surrounding temporal cues.
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