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Abstract

Multilingual BERT (mBERT) has been ex-
tensively investigated for cross-lingual trans-
fer learning (CLTL), achieving strong perfor-
mance owing to its rich semantic representa-
tions. Recent studies have demonstrated that
visually grounded models, such as PIXEL,
can also be applied to CLTL by leveraging
character-level glyph information. In this work,
we present a comparative study of mBERT
and PIXEL in a zero-shot cross-lingual transfer
setting across 5 languages. Our results show
that mBERT consistently outperforms PIXEL
in overall accuracy, underscoring the effec-
tiveness of semantic representations for CLTL.
Nevertheless, we find that PIXEL exhibits com-
petitive performance for visually similar lan-
guage pairs and maintains robustness when
semantic information is limited, suggesting
the usefulness of visual information in cross-
lingual transfer scenarios.

1 Introduction
Cross-lingual transfer learning (CLTL) aims to ex-
ploit knowledge acquired in a source language to
improve performance in a target language. multi-
lingual BERT (mBERT) (Devlin et al., 2019), has
been widely explored in CLTL tasks and shows
great performance. mBERT adopts a multilingual
subword tokenization strategy and learns shared
semantic representations from large-scale multilin-
gual corpora, thereby enabling robust cross-lingual
generalization. It is well established that semantic-
based models, such as mBERT, can serve as effec-
tive backbones for CLTL tasks.

Complementary to these token-based ap-
proaches, recent work in Visual NLP explores the
potential of processing written language through
its visual form, rather than as sequences of dis-
crete tokens. A notable example is PIXEL (Rust
et al., 2022), a tokenizer-free language model
that processes text as images. PIXEL renders

text into fixed-size grayscale images, partitions
them into non-overlapping patches, and processes
these patches with a Vision Transformer (ViT)
backbone trained using a masked patch predic-
tion objective. By bypassing language-specific
tokenization, PIXEL inherently supports script-
agnostic processing and facilitates cross-lingual
transfer without relying on a shared subword
vocabulary. Empirical results across multiple
multilingual benchmarks (Rust et al., 2022) show
that PIXEL achieves competitive performance,
demonstrating robustness to diverse scripts, ortho-
graphic variation, and visual distortions. These
findings suggest that visual-based models such as
PIXEL can also serve as effective backbones for
CLTL tasks.

Given that both semantic-based models and
vision-based models are capable of supporting
transfer learning, in this work, we ask a simple
question: Is cross-lingual transfer learning more
effective when models focus on semantic mean-
ing, like mBERT, or when they focus on the vi-
sual form of text, such as the shapes of scripts and
glyphs, like PIXEL? To answer this question, we
compare semantic-based and shape-based transfer
in a CLTL setting. In the setting, the source task is
sentiment classification in five languages: Chinese,
Japanese, English, French, and Spanish, while the
target task is Chinese offensive language classifica-
tion. We conduct experiments with both mBERT
and PIXEL, followed by a comparative analysis of
their performance across model types and writing
scripts.

Our key findings are summarized as follows:

1. mBERT outperforms PIXEL in overall accu-
racy, indicating the superior effectiveness of
semantic information in transfer learning.

2. PIXEL transfers effectively for visually simi-
lar language pairs and performs robustly un-
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der limited semantic information by exploit-
ing glyph cues.

2 Related Work
2.1 Cross-Lingual Transfer learning
Transfer learning (Pan and Yang, 2010) is a widely
adopted machine‐learning methodology in which
a model trained on a source task or domain is
reused and adapted to improve performance on a
related target task or domain. Cross-lingual trans-
fer learning (CLTL) constitutes a transfer learning
paradigm that emphasizes the transfer of knowl-
edge between two distinct languages. This ap-
proach has been recognized as an effective frame-
work for tasks such as offensive language detec-
tion. Ranasinghe and Zampieri (2020) and Montar-
iol et al. (2022) employed zero-shot cross-lingual
transfer in their respective studies, demonstrating
its capability to facilitate knowledge transfer to
previously unseen languages. However, Nozza
(2021) highlights that such zero-shot transfer may
incur performance degradations and be suscep-
tible to cultural and lexical pitfalls, particularly
when transferring from English to other languages
without access to labeled data in the target lan-
guage. In contrast, De la Peña Sarracén et al.
(2023), Röttger et al. (2022), and Caselli and Plaza-
del Arco (2025) investigated the few-shot setting,
wherein the model is provided with a limited num-
ber of labeled examples in the target language to en-
hance adaptation and mitigate transfer-related defi-
ciencies.

The relationship between the source and target
languages has been extensively examined in the
context of CLTL. Blaschke et al. (2025) analyzed
263 languages across three NLP tasks and con-
clude that choosing the similarity measure based
on the task is important, with lexical similarity be-
ing most predictive for lexicon-heavy tasks. Lim
et al. (2024) examined multiple source–target se-
tups and found that multi-source transfer performs
best when at least one typologically close language
is combined with several diverse sources, while
random selection can be suboptimal. Lin et al.
(2024) introduced a model-embedding-based simi-
larity metric and showed it predicts cross-lingual
transfer performance better than typology-based
metrics, especially in low-resource settings. Prior
findings indicate that higher similarity between the
source and target languages can enhance the effec-
tiveness of cross-lingual transfer.

2.2 Vision Transformer
As we introduced in section 1, PIXEL (Rust et al.,
2022) is one of the representatives of Vision Trans-
former (ViT)-based models. Original PIXEL only
pretrained on English corpora, PIXEL‑M4 (Kesen
et al., 2025) extended the approach through mul-
tilingual pretraining on four visually and linguisti-
cally diverse languages: English, Hindi, Ukrainian,
and Simplified Chinese, yielding substantially im-
proved performance and cross-script transfer in
non-Latin scripts compared to its monolingual
counterparts. The Vision Transformer (ViT), origi-
nally proposed by Dosovitskiy et al. (2020), has in-
spired a wide range of subsequent works, including
ViLT (Kim et al., 2021), ALBEF (Li et al., 2021),
and PaLI (Chen et al., 2022).

Vision Transformer (ViT) concepts have been in-
creasingly applied in multimodal NLP tasks. Kim
et al. (2021) proposed ViLT, a convolution-free
vision-and-language model that achieves compet-
itive performance on Visual Question Answering,
image–text retrieval, and visual reasoning, while
being substantially more efficient than prior visual
models. Ganz et al. (2024) presented QA‑ViT, a
Question‑Aware Vision Transformer that embeds
question-specific awareness directly within the vi-
sion encoder, allowing dynamic visual feature
adaptation to queries and achieving consistent im-
provements across various multimodal reasoning
tasks. Chochlakis et al. (2022) introduced VAuLT,
extending ViLT with BERT to enhance semantic
representations in multimodal sentiment analysis,
improving sentiment prediction accuracy.

3 Zero-shot CLTL from Sentiment to
Offensiveness

In this study, we explain the details of zero-shot
cross-lingual transfer learning from sentiment anal-
ysis to offensive language detection across multi-
ple languages, as illustrated in Figure 1.

First of all, our experimental design follows the
inductive transfer learning paradigm defined by
Pan and Yang (2010), wherein the source and tar-
get tasks differ. We focus on the transfer from sen-
timent classification (source task) to offensive lan-
guage detection (target task). In sentiment classifi-
cation, each sentence is labeled as either“positive”
or “negative”. In offensive language detection,
sentences are labeled as either“non-offensive”or“offensive”. We adopt a label alignment assump-
tion, mapping negative sentiment to the offensive
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Dataset language offensive non offensive total
COLD Chinese 18041 19439 37480
Dataset language negative positive total

WeiboSenti Chinese 10000 10000 20000
WRIME Japanese 11604 10834 22438

Sentiment140 English 9980 9968 19948
French_multi French 10000 10000 20000
Spanish_multi Spanish 9994 9976 19970

Table 1: Data statistics of datasets in the experiment

class and positive sentiment to the non-offensive
class. This mapping is consistent with prior work
leveraging sentiment features for offensive or sar-
casm language detection (Islam, 2024; Husain and
Uzuner, 2021).

Under this alignment, we fine-tune multilingual
models on sentiment datasets and evaluate them di-
rectly on offensive language detection without ex-
posure to offensive data during training, constitut-
ing a zero-shot transfer setting. We employ sen-
timent datasets in 5 source languages: Chinese,
Japanese, English, French, and Spanish. Evalua-
tion is performed exclusively on a Chinese offen-
sive language test set.

For each experiment, we fine-tune a model us-
ing a single source language, without combining
datasets across languages. In addition to zero-shot
transfer, we establish a supervised baseline by fine-
tuning the models on Chinese offensive language
training data and evaluating them on the same Chi-
nese offensive language test set.

We experiment with two multilingual pre-
trained models: mBERT and multilingual PIXEL
(PIXEL-M4). Both models are pre-trained on
corpora including Chinese and English; however,
PIXEL-M4 does not include Japanese, French,
or Spanish in its pretraining, whereas mBERT
does. Hyperparameter configurations for fine-
tuning both models are reported in Table 5 and Ta-
ble 6 in the Appendix A. Fine-tuning parameters
are kept consistent across all source languages and
the baseline.

4 Data Collection
We now describe the datasets used in our experi-
ments. Our setup requires both offensive language
data for target evaluation and multilingual senti-
ment datasets for source languages.

For the Chinese offensive language dataset, we
utilize the COLD dataset (Deng et al., 2022), a

Chinese
Sentiment

Japanese
Sentiment

English 
Sentiment

French 
Sentiment

Spanish
Sentiment

PIXEL 
Model

mBERT
Model

Chinese
Offensiveness

Individual Fine-tuning

Zero-Shot Prediction

Figure 1: Zero-shot CLTL from Sentiment to Offensive-
ness. We fine-tune the PIXEL and mBERT with senti-
ment data in different languages individually and con-
duct zero-shot prediction on Chinese offensiveness.

publicly available corpus comprising 37,480 so-
cial media comments annotated with binary offen-
sive labels. Following the original data partition-
ing scheme proposed by the authors, we divide the
corpus into training, development, and test sub-
sets. For the baseline configuration, the mBERT
and PIXEL models were trained on the training set,
with hyperparameters optimized using the develop-
ment set of the offensive language dataset, while
the test set is reserved exclusively for final evalua-
tion. The test set comprises 5,323 instances from
the offensive language dataset and is consistently
employed across both the baseline and all transfer
learning settings.

Then we introduce the sentiment classification
datasets for five languages. The Chinese sentiment
data is drawn from the work of (Wan et al., 2020),
named WeiboSenti. For Japanese, we adopt the
WRIME (Kajiwara et al., 2021) dataset, which pro-
vides labeled sentiment annotations for Japanese
texts. English sentiment data is obtained from
the widely used Sentiment140 (Go et al., 2009)
dataset, developed by a research team at Stan-
ford University. For French and Spanish, we ag-
gregate samples from multiple publicly available
sources, guided by documentation provided by
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Language PIXEL-M4 mBERT
Baseline 0.7367 0.7950
Chinese 0.4885(!0.2482) 0.5784(!0.2166)
English 0.4708(!0.2659) 0.5533(!0.2417)
Japanese 0.4582(!0.2785) 0.5525(!0.2425)
French 0.3900(!0.3467) 0.6084(!0.1866)
Spanish 0.3472(!0.3895) 0.4880(!0.3070)

Table 2: F1-Score (Macro Average for two classes) for PIXEL-M4 and mBERT on zero-shot sentiment transfer.
The symbol ! denotes a performance decrease relative to the Baseline.The baseline is trained with the target data
set, namely the offensive language data. In other words, this essentially corresponds to the upper bound for this
target task against zero-shot approaches from sentiment analysis.

Brand24/mms (Łukasz Augustyniak et al., 2023)
and named them French_multi and Spanish_multi.
The French data is drawn from the datasets of (Narr
et al., 2012; Keung et al., 2020). The Spanish data
is sourced from datasets of (Cruz et al., 2008; Ke-
ung et al., 2020; Keith Norambuena et al., 2019;
Patwa et al., 2020; Mozetič et al., 2016).

To ensure fair cross-lingual comparison, we con-
trol the size of each sentiment dataset to approx-
imately 20,000 examples per language. For Chi-
nese and English, where the sentiment data orig-
inates from a single source, we randomly sample
subsets from the original datasets. For French
and Spanish, where data is drawn from multi-
ple sources, we allocate samples proportionally to
achieve a total of 20,000 instances per language.
For Japanese, we use the entire original dataset, as
its size is already close to the target. During data
collection, we balance the label distribution within
each dataset to achieve an approximately 1:1 ratio
between positive and negative sentiment classes,
thereby mitigating potential bias from class imbal-
ance in training. After data collection, we apply a
simple preprocessing pipeline to remove hashtags,
emojis, and URLs. Some instances are discarded
during this process, and the final dataset statistics
used in our experiments are reported in Table 1.

We follow the original data splits provided by
the authors for COLD, using their train, evalu-
ation, and test sets. For the sentiment analy-
sis datasets (WeiboSenti, WRIME, Sentiment140,
French_multi, and Spanish_multi), we partition
the data into training (80%) and evaluation (20%)
subsets, as no test data of sentiment is required.

5 Experiment Results and Analysis

The experimental results are presented in Table 2.
We conduct 3 runs under the same experimental

setting and report the average performance across
3 runs as the final result. We report only the macro-
averaged F1 score over the two classes (offensive
and non-offensive) in Table 2 for analysis. Addi-
tional details, including training statistics and other
classification metrics, are provided in Table 7 in
Appendix B and Table 8 in Appendix C. The Base-
line setting corresponds to fine-tuning the models
on the COLD training set and evaluating them on
the COLD test set. Names of the languages cor-
respond to the source sentiment datasets in Table
1.

Across all transfer scenarios, we observe a de-
crease in performance relative to the baseline. This
performance degradation can be attributed to task
mismatch or language differences between the
source and target. For example, a conceptual and
label mismatch leads to inevitable information loss:
0.2482 for PIXEL-M4 and 0.2166 for mBERT,
even in the same language transfer setting from
Chinese sentiment to Chinese offensiveness.

Comparing the two models, we first observe that
the baseline performance of mBERT surpasses that
of PIXEL. Furthermore, mBERT consistently ex-
hibits smaller performance decrease than PIXEL-
M4. For instance, in the English case, the de-
crease is 0.2417 for mBERT compared to 0.2659
for PIXEL-M4, and this pattern holds for all lan-
guages. This observation suggests that semantic in-
formation may play a more robust and critical role
in cross-lingual transfer than visual information.

Although PIXEL-M4 underperformed in terms
of F1-score, this outcome does not necessarily im-
ply that visual information is useless in transfer
learning. From a cross-lingual perspective, lan-
guages may share substantial visual similarity in
their orthographic forms. For example, Chinese
and Japanese share a large inventory of Chinese
characters, many of which are identical or visu-
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Dataset original replaced with radical label

COLD 真恶心啊那个男的
(That guy is disgusting) 具亚心口二丨力勺 offensive

WeiboSenti 人口就是多国庆出门
(Many people go out on National Day) 人口京日夕囗大凵门 positive

WRIME 友達コロナ疑惑とか焦るー
(My friend is worried about coronavirus) 又辶コロナ疋心とか灬るー negative

Table 3: Examples of replacement with radicals in Chinese and Japanese datasets. Inside the () is the meaning of
the sentences.

Dataset PIXEL-M4 mBERT
COLD 0.7367 0.7950
COLD_radicals 0.5360 ( ! 0.2007) 0.4789 ( ! 0.3161)
WeiboSenti 0.4885 0.5784
WeiboSenti_radicals 0.4670 ( ! 0.0215) 0.4368 ( ! 0.1416)
WRIME 0.4582 0.5525
WRIME_radicals 0.5002 ( " 0.0420) 0.5287 ( ! 0.0238)

Table 4: F1-Score (Macro Average for two classes) for Ablation study: replacement with radicals. The symbol! de-
notes a performance decrease relative to the no replacement. The symbol " denotes performance increase.

ally similar. Likewise, English, French, and Span-
ish employ closely related Latin scripts with only
minor orthographic variations. Focusing on the
PIXEL-M4 model alone, we find evidence that vi-
sually similar languages can still yield better re-
sults. PIXEL-M4 was pretrained on Chinese and
English; accordingly, we compare transfer perfor-
mance from these two languages and observe that
transfer from Chinese sentiment achieves higher
accuracy than from English (0.4885 vs. 0.4708).
For languages not seen in PIXEL-M4 pretraining:
Japanese, French, and Spanish, Japanese yields the
highest performance (0.4582), followed by French
(0.3900) and Spanish (0.3472). These results in-
dicate that, for PIXEL-M4, transferring from vi-
sually similar languages (e.g., Chinese, Japanese)
to Chinese offensiveness classification tends to be
more effective.

In summary, while mBERT appears more robust
overall likely due to its stronger semantic repre-
sentation, results of PIXEL-M4 demonstrate that
visual similarity remains a contributive factor in
cross-lingual transfer. We further conduct a paired
t-test and a Wilcoxon signed-rank test to assess
the significance of the performance difference be-
tween the two models. For the paired t-test, the
results are t = −4.8359 and p = 0.0047, while for
the Wilcoxon signed-rank test, the results are W
= 0.0 and p = 0.0312. Both tests indicate a sta-
tistically significant difference at the 0.05 level,

thereby demonstrating the robustness and reliabil-
ity of the observed results.

6 Ablation Study on Visual Similarity
As discussed in the previous section, visual simi-
larity can be a contributing factor in cross-lingual
transfer, though it is not decisive as semantic repre-
sentation. We now investigate an extreme scenario
in which the semantic content of sentences is re-
moved, to assess whether visual information alone
can still facilitate transfer learning.

To this end, we conduct an ablation study by
replacing all Chinese characters with their corre-
sponding radicals. A radical in Chinese is a sub-
character component that often contributes to the
meaning or pronunciation of the full character, but
is not sufficient on its own to convey the origi-
nal word’s semantic meaning. Importantly, rad-
icals preserve substantial visual information, such
as stroke patterns, visual structure, and positional
arrangement, thereby maintaining a high degree
of script-level similarity to the original characters
even when semantic content is removed.

We apply this replacement procedure to all 3
datasets containing Chinese characters, namely
COLD, WeiboSenti, and WRIME. It is worth
noting that a single Chinese character (kanji in
Japanese) may contain multiple components that
can be interpreted as radicals. In our experiments,
we employ the RadicalFinder module from the
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cjkradlib 1 Python library and select the first can-
didate radical for a Chinese character suggested by
the tool. For COLD, we replace only the training
set while keeping the original test set unchanged.
For WeiboSenti and WRIME, we replace the en-
tire datasets, as no test data is required from these
datasets. We replace only the texts, while preserv-
ing their original sentiment and offensiveness la-
bels. Some examples of the replacement are illus-
trated in Table 3. The modified sentences become
semantically uninterpretable while preserving vi-
sual similarity to the original languages. These rad-
ical scripts can be regarded as a pseudo-language
devoid of semantic content, and thus treated as
the source languages in the zero-shot CLTL frame-
work described in Section 3. For COLD, We fine-
tune the models on the radical-based training data
and evaluate them on the original test set. For Wei-
boSenti and WRIME, we apply the same procedure
as in Section 3, fine-tuning on radical-based scripts
and evaluating on the original COLD test set.

The experimental results are presented in Ta-
ble 4. Performance is measured using the macro-
averaged F1-score over the two classes (offen-
sive and non-offensive), consistent with Table 2.
The modified pseudo-scripts data are named _rad-
icals after their original datasets. We observe
that replacing characters with radicals generally
leads to performance degradation across all three
datasets for both models. For instance, on COLD,
PIXEL-M4 experiences a decrease of 0.2007,
while mBERT suffers a greater decrease of 0.3161.
All settings show performance decreases, except
for WRIME with PIXEL-M4, where we observe
a slight improvement (+0.0420). These findings
reinforce the conclusion that semantic meaning
is critical for both PIXEL-M4 and mBERT. Al-
though PIXEL-M4 is effective in capturing script-
level features, it remains susceptible to semantic
information loss, which in turn degrades perfor-
mance.

Interestingly, when comparing models within
each dataset, we find the opposite trend from the
previous section: PIXEL-M4 consistently exhibits
less performance decrease than mBERT in the
case of radical replacement. For example, in Wei-
boSenti_raidcals, the decrease of PIXEL-M4 is
only 0.0215, whereas the decrease of mBERT is
0.1416. In the WRIME_radicals, the performance
of PIXEL-M4 even improves with the radical re-

1https://pypi.org/project/cjkradlib/

placement, which warrants further investigation.
These results suggest that when semantic meaning
is absent, visual similarity can still be leveraged
for transfer learning, and visual-based models such
as PIXEL are more robust in such cases. Conse-
quently, visual similarity between source and tar-
get languages may serve as an important criterion
when selecting language pairs for cross-lingual
transfer, particularly in scenarios where semantic
information is scarce or unavailable.

7 Conclusion
In this paper, we examine the impact of transfer
learning on two multilingual models: the semantic-
oriented mBERT and the visual-oriented PIXEL.
We adopt a zero-shot cross-lingual transfer set-
ting across five languages to compare their perfor-
mance. Experimental results indicate that seman-
tic information constitutes a reliable and effective
basis for transfer learning, outperforming purely vi-
sual cues. However, a closer analysis of PIXEL re-
veals that it facilitates transfer particularly well be-
tween visually similar source and target language
pairs, suggesting that visual information remains a
non-negligible factor in cross-lingual transfer. Fur-
thermore, our ablation study shows that even in
the absence of semantic information, PIXEL can
achieve robust transfer performance. This finding
highlights the potential of visual information as a
viable alternative for transfer learning in scenarios
where semantic information is limited. Our cur-
rent work focuses exclusively on standard quanti-
tative classification metrics such as the F1 score.
For future work, we aim to conduct a detailed error
analysis to identify qualitative linguistic patterns
(e.g, failure cases and script-specific phenomena),
thereby providing deeper insights into the role and
impact of visual information.

Limitations
This study has several limitations. Most notably,
the sentiment-to-offensiveness transfer setting re-
lies on the simplifying assumption that offensive
language is conceptually equivalent to negative
sentiment. While there is empirical overlap be-
tween the two, this assumption may not capture the
full complexity of offensive language, which can
include sarcastic, provocative, or contextually am-
biguous expressions that are not necessarily associ-
ated with negative sentiment. Future work should
aim to develop stronger transfer settings, poten-
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tially involving intermediate tasks, richer label tax-
onomies, or adversarial adaptation strategies, to
more accurately bridge the gap between sentiment
and offensiveness.

Moreover, in the current study, we focus exclu-
sively on the case of sentiment-to-offensiveness
transfer across five languages. To enable a more
comprehensive analysis, future work should ex-
tend the experiments beyond this setting to encom-
pass additional transfer scenarios and a broader
range of languages.
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A Fine-tuning Parameters

Parameters Values
Rendering backend PyGame

Classification head pooling Mean
Optimizer AdamW
Adam β (0.9, 0.999)
Adam ε 1e-8

Weight decay 0
Learning rate 3e-5

Learning rate warmup steps 100
Learning rate schedule Linear decay
Max sequence length 529

Batch size 64
Max steps 15000

Early Stopping Active
Eval interval 100 steps

Dropout probability 0.1

Table 5: Fine-tuning parameters for PIXEL models.

Parameters Values
Classification head pooling CLS embedding

Optimizer AdamW
Adam β (0.9, 0.999)
Adam ε 1e-8

Weight decay 0
Learning rate 3e-5

Learning rate warmup steps 100
Learning rate schedule Linear decay
Max sequence length 256

Batch size 64
Max steps 15000

Early Stopping Active
Eval interval 100 steps

Dropout probability 0.1

Table 6: Fine-tuning parameters for mBERT models.

B Best Evaluation F1 during Training

Datasets mBERT PIXEL-M4
WeiboSenti 0.8845 0.7851

WRIME 0.8527 0.7304
Sentiment140 0.8039 0.6657
French_multi 0.9231 0.7960
Spanish_multi 0.7782 0.6878

Table 7: Best F1 score recorded when evaluating the
training effect using sentiment evaluation data. The
checkpoint corresponding to the best F1 score is saved
at the end of training.

C Full Metrics for Experiment Results
Dataset Model Precision (Mean) Precision (Std) Recall (Mean) Recall (Std) F1-score (Mean) F1-score (Std)
COLD mbert 0.7961 0.0030 0.8090 0.0034 0.7950 0.0046
COLD pixel 0.7395 0.0051 0.7501 0.0055 0.7367 0.0062

WeiboSenti mbert 0.6651 0.0045 0.6375 0.0137 0.5784 0.0259
WeiboSenti pixel 0.5972 0.0067 0.5683 0.0082 0.4885 0.0181

Sentiment140 mbert 0.5621 0.0112 0.5589 0.0177 0.5533 0.0157
Sentiment140 pixel 0.5109 0.0119 0.5105 0.0108 0.4708 0.0698

WRIME mbert 0.6591 0.0046 0.6221 0.0053 0.5525 0.0109
WRIME pixel 0.4986 0.0154 0.5002 0.0065 0.4582 0.0357

French_multi mbert 0.6214 0.0099 0.6241 0.0095 0.6084 0.0032
French_multi pixel 0.4551 0.0306 0.4966 0.0010 0.3900 0.0097
Spanish_multi mbert 0.6841 0.0035 0.5972 0.0249 0.4880 0.0497
Spanish_multi pixel 0.5909 0.0306 0.5178 0.0145 0.3472 0.0557

Table 8: Macro Avg Metrics: Mean and Standard Deviation(Std) of Precision, Recall, and F1 score over 3 Runs of
the CLTL experiment.
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