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Abstract

Generating concise titles for machine learning
abstracts is essential for navigating complex
literature but challenging due to specialized
terminology and dense text structures. We pro-
pose a novel sentence ordering method that
uses a two-stage sequence-to-sequence BART
framework, augmented by an auxiliary model
that extracts sentences with the highest key-
word overlap to the title and ranks candidate
sentence permutations. The optimal ordering
guides BART to produce coherent and con-
cise titles. We evaluate our method on the test
split of a large dataset of over 21,000 machine
learning title–abstract pairs from Springer jour-
nals. Results show that structured input via op-
timized sentence ordering improves title qual-
ity compared to baseline models. These find-
ings highlight sentence ordering as an under-
explored yet effective strategy for enhancing
scientific text generation.

1 Introduction

Machine learning (ML) research has surged in
recent years, with Springer journals publishing
thousands of abstracts that distill cutting-edge ad-
vances, from neural architecture search to rein-
forcement learning. Titles play a pivotal role in
this ecosystem, serving not only as entry points
for researchers but also as essential elements for
indexing and retrieval across academic platforms
like SpringerLink. Crafting a title that concisely
conveys complex technical contributions remains a
non-trivial task, especially when abstracts contain
dense, domain-specific terminology (e.g., “atten-
tion mechanisms”) and exhibit structural disper-
sion, where key ideas are embedded across multi-
ple, non-adjacent sentences. These characteristics
pose significant challenges for automated title gen-
eration systems, which must distill and reorganize
salient content into coherent and informative sum-
maries.

In this work, we utilize BART, a denoising au-
toencoder (Lewis et al., 2019), for this title genera-
tion task. While previous methods typically treat
abstracts as flat, unordered text, our approach intro-
duces a two-stage sequence-to-sequence pipeline
that incorporates sentence-ordering cues to im-
prove the semantic coherence and informative-
ness of generated titles. By doing so, we propose
a novel strategy that bridges document structure
awareness with abstractive summarization, paving
the way for more effective automated indexing of
scientific literature.

Our method begins with input structuring, where
a RoBERTa-based auxiliary model (Liu et al.,
2019) is trained to identify important sentences
from each abstract using heuristic labels derived
from keyword overlap with the gold title. A per-
mutation scoring module subsequently ranks up
to max_permutation shuffled sentence orderings
according to their similarity to the gold title em-
bedding. The permutation that receives the highest
score, which reflects coherence and relevance to
the title, is selected as the input. This refined input
is then used in the title generation stage, where a
BART model is trained to produce scientific titles.
By conditioning the generator on input that is more
coherent and focused, the model learns to generate
concise and accurate titles. Training and evalu-
ation are carried out on a curated dataset of ma-
chine learning title and abstract pairs obtained from
Springer journals. Our results demonstrate that in-
corporating sentence reordering not only improves
standard metrics such as ROUGE and BERTScore,
but also enhances semantic alignment with refer-
ence titles. This two-stage approach highlights
the value of structural preprocessing in abstractive
title generation and offers a practical framework
for improving title quality in scientific publishing
workflows.

Our contributions are as follows:
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• We present a novel two-stage method that in-
tegrates sentence selection and ordering using
RoBERTa and BART to improve scientific
title generation in the machine learning do-
main.

• We construct and release a new dataset of over
21k machine learning research title-abstract
pairs collected from Springer journals.1 2

• We demonstrate that our approach improves
over a strong BART baseline in both ROUGE
and BERTScore, showing consistent gains in
title relevance and coherence.

The paper is organized as follows. Section 2
reviews related work, Section 3 details our method-
ology, Section 4 presents evaluations, Section 5
analyzes input properties, Section 6 discusses the
results, and Section 7 concludes.

2 Related Work

2.1 Scientific Title Generation
Scientific title generation is often framed as an
extreme summarization task, aiming to distill the
essence of a research article or abstract into a con-
cise and informative title. Early approaches re-
lied on statistical and rule-based methods, such as
feature-based classifiers that extracted keywords
from abstracts to construct titles (Kupiec et al.,
1995). These methods, while computationally effi-
cient, struggled with capturing nuanced semantic
relationships and often produced formulaic outputs
lacking domain-specific precision.

The advent of neural networks marked a signifi-
cant shift in title generation. Encoder-decoder ar-
chitectures, particularly recurrent neural networks
(RNNs), were employed to generate abstractive
summaries and titles (Nallapati et al., 2016). These
models improved fluency but were limited by their
dependence on sequential processing, which of-
ten failed to capture long-range dependencies in
complex scientific texts. To address this, retrieval-
based methods, such as k-nearest-neighbors (k-
NN) approaches, leveraged word co-occurrence
patterns in abstracts to propose candidate titles
(Putra and Khodra, 2017). While effective for
general-purpose texts, these methods often gener-
ated generic or overly broad titles when applied to

1Source: https://link.springer.com
2Dataset: https://www.kaggle.com/datasets/

tiamatt/springerjournal-450tk-0-5cosine

scientific domains, where precision and specificity
are paramount.

More recently, pre-trained transformer models,
such as GPT-2 and T5, have been fine-tuned for
title generation tasks (Riku and Masaomi, 2022).
These models generate multiple candidate titles,
which are then ranked or refined using heuristic
or learned scoring mechanisms. For instance, fine-
tuned GPT-2 models have been used to propose di-
verse title candidates, with post-processing steps to
select the most contextually relevant option. How-
ever, transformer-based approaches often struggle
with domain-specific scientific terminology and
may produce titles that lack the innovative or pre-
cise phrasing required in academic contexts. Addi-
tionally, these models typically treat the input text
as a fixed sequence, ignoring the potential benefits
of restructuring the input for better coherence or
informativeness.

Recent advances have explored the incorpora-
tion of domain knowledge into title generation.
For example, some approaches integrate scientific
ontologies or citation networks to enhance the rel-
evance of generated titles. Others have experi-
mented with hybrid models that combine neural
generation with rule-based constraints to ensure
adherence to domain-specific conventions. Despite
these advances, a key limitation persists: existing
methods do not explicitly optimize the input struc-
ture (e.g., sentence ordering) to enhance the quality
of generated titles. Our work addresses this gap
by introducing a novel pipeline that ranks sentence
permutations using an auxiliary RoBERTa scorer
to guide BART title generation, ensuring that the
input structure maximizes coherence and informa-
tiveness for scientific title generation.

2.2 Sentence Ordering in NLP
Sentence ordering is a critical task in Natural Lan-
guage Processing, aimed at arranging sentences
to maximize coherence and logical flow, which is
particularly important for text generation, summa-
rization, and question answering. Early approaches
to sentence ordering relied on heuristic methods,
such as ranking sentences based on lexical cohe-
sion or syntactic patterns. However, these methods
often failed to capture deep semantic relationships,
leading to suboptimal arrangements in complex
texts like scientific abstracts.

Neural approaches have significantly improved
sentence ordering. For instance, Gong et al. (2016)
introduced an end-to-end pointer network to model
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sentence sequences for summarization, achieving
better coherence than traditional methods. Sim-
ilarly, Logeswaran et al. (2017) used RNNs to
treat sentence ordering as a coherence optimiza-
tion problem, leveraging sequential dependen-
cies. More recently, transformer-based models
like BERT have employed sentence-level repre-
sentations, such as their dedicated [CLS] embed-
dings, to predict optimal orderings through pair-
wise comparisons or sequence modeling (Devlin
et al., 2019). However, to our knowledge, no prior
work has directly used [CLS] embeddings to score
and rank sentence permutations specifically for
sentence ordering.

Our work proposes a novel application of sen-
tence ordering tailored specifically for scientific ti-
tle generation. Unlike previous approaches, which
mainly focus on coherence in summarization or
narrative tasks, we use roberta-base’s [CLS] em-
beddings to rank sentence permutations, optimiz-
ing the input structure for a bart-base title gen-
eration model. This allows the generated titles to
be not only coherent but also better aligned with
the key contributions and domain-specific content
of the abstract, addressing an important gap in the
literature.

3 Methodology

We present a novel method to enhance title gen-
eration by optimizing the sentence order within
scientific abstracts. Our approach consists of three
key stages: (1) training a roberta-base model
to identify salient sentences, (2) generating multi-
ple sentence permutations and ranking them , and
(3) fine-tuning a BART-base model on the highest-
ranked permutations to produce coherent and infor-
mative titles. This section outlines the full pipeline
(see Figure 1), including model architectures, data
pre-processing, and training strategies.

3.1 Sentence Selection

To estimate the relevance of a sentence with re-
spect to the title, we train the roberta-base (Liu
et al., 2019) encoder as a regression model. Each
sentence Si in the abstract is independently en-
coded using RoBERTa, with a special [CLS] token
prepended to the input sequence for sentence-level
representation. A scalar relevance score is pre-
dicted via a linear head applied to the [CLS] em-
bedding.

Let hi → Rd be the [CLS] embedding vector
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Figure 1: Overview of the title generation architecture
with sentence extraction and permutation scoring.

extracted from the last hidden state of RoBERTa
for sentence Si and yi → [0, 1] the normalized key-
word overlap score (see Equation 8). The model
employs a linear head with parameters W → R768

and b → R, computing:

ŷi = W→hi + b (1)

where the output is a single scalar score without
activation to constrain it to [0, 1]. The model is
trained to minimize the Mean Squared Error (MSE)
loss function:

LMSE =
1

N

N∑

i=1

(ŷi ↑ yi)
2 (2)

where ŷi is the predicted score and yi is the ground
truth label, and N is the number of sentences in
the batch.

We demonstrate our model’s sentence selection
process using the abstract from Logeswaran et al.
(2017) as input:

3.2 Dual Encoder Architecture
Building on the extracted sentences from the pre-
vious stage, the dual encoder framework reorders
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Table 1: Example of model input and output for sen-
tence extraction in scientific abstracts. The yellow box
highlights the original abstract, while the green box
contains the sentences selected by the model.

Title:
Sentence Ordering and Coherence Modeling using Recurrent
Neural Networks
Original abstract:

Modeling the structure of coherent texts is a key NLP
problem. The task of coherently organizing a given
set of sentences has been commonly used to build
and evaluate models that understand such structure.
We propose an end-to-end unsupervised deep learn-
ing approach based on the set-to-sequence framework
to address this problem. Our model strongly outper-
forms prior methods in the order discrimination task
and a novel task of ordering abstracts from scientific
articles. Furthermore, our work shows that useful
text representations can be obtained by learning to
order sentences. Visualizing the learned sentence rep-
resentations shows that the model captures high-level
logical structure in paragraphs. Our representations
perform comparably to state-of-the-art pre-training
methods on sentence similarity and paraphrase detec-
tion tasks.

Sentences selected by the model:

1. Modeling the structure of coherent texts is a key
NLP problem.

2. We propose an end-to-end unsupervised deep
learning approach based on the set-to-sequence
framework to address this problem.

3. Our model strongly outperforms prior methods in
the order discrimination task and a novel task of
ordering abstracts from scientific articles.

4. Visualizing the learned sentence representations
shows that the model captures high-level logical
structure in paragraphs.

5. Our representations perform comparably to state-
of-the-art pre-training methods on sentence simi-
larity and paraphrase detection tasks.

these inputs to improve title generation. The ar-
chitecture integrates a main encoder-decoder for
generation and an auxiliary encoder for ranking
sentence permutations.

Main Encoder-Decoder. A bart-base model
serves as the primary sequence-to-sequence com-
ponent. It takes a linearized sequence of selected
sentences as input and generates the corresponding
scientific title.

Auxiliary Encoder and Scoring Head. To guide
the sentence ordering, a roberta-base encoder is
paired with a trainable scoring head, which is a two-
layer multilayer perceptron (MLP) implemented as
Linear(768 ↓ 64) ↓ ReLU ↓ Linear(64 ↓ 1),

where the input is the [CLS] embedding of each
permutation. The output is a scalar score indicating
the estimated quality of the sentence ordering.

Permutation Sampling and Scoring. For each
abstract, a set of permutations is sampled from the
previously selected sentences by randomly shuf-
fling their order. To maintain computational feasi-
bility, only a fixed number of unique permutations
are generated per abstract. Each permutation is
then encoded and scored by the auxiliary model to
estimate its informativeness and coherence. The
permutation receiving the highest score is selected
as input to the main encoder-decoder for title gen-
eration.

Proxy-Based Ranking Supervision. To super-
vise the scorer, we use a weak proxy signal based
on semantic similarity to the gold title. Each per-
mutation ωi and the gold title t are encoded using
the frozen auxiliary encoder, and their [CLS] em-
beddings hωi and ht are extracted. The proxy score
for each permutation is computed as the cosine sim-
ilarity:

proxy(ωi) = cos(hωi , ht) =
hωi · ht

↔hωi↔ ↔ht↔
(3)

Despite containing the same content, different
sentence orderings lead to distinct contextualized
embeddings due to the encoder’s positional encod-
ings and attention patterns. Thus, the cosine sim-
ilarity reflects the degree to which a permutation
semantically aligns with the target title.

Prior to computing pairwise supervision signals,
both the predicted scores ε(hωi) and the proxy
scores proxy(ωi) are sorted in descending order
to obtain their respective ranking positions. This
ensures that relative pairwise preferences are com-
puted consistently.

To train the scorer, we align its predicted scores
with the proxy scores using a differentiable approx-
imation of Kendall’s tau rank correlation (Kendall,
1938). We define the pairwise target label for each
permutation pair (ωi,ωj) as:

yij =
sign(proxy(ωi)↑ proxy(ωj)) + 1

2
(4)

which equals 1 if ωi should be ranked above ωj ,
and 0 otherwise. The soft prediction of the scorer
is:

ŷij = ϑ

(
ε(hωi)↑ ε(hωj )

ϖ

)
(5)

617



where ϑ is the sigmoid function, ϖ is a temperature
hyperparameter, and ε(hω) denotes the scorer’s
scalar output for permutation ω.

The final ranking loss is computed using the
binary cross-entropy (BCE) between the predicted
and proxy-based pairwise preferences:

Lkendall =
1

N(N ↑ 1)

∑

i ↑=j

BCE(ŷij , yij) (6)

This formulation softly penalizes misalignments
between the predicted permutation order and the
proxy-induced ranking while remaining fully dif-
ferentiable.

Overall Training Objective. The final loss com-
bines the main sequence-to-sequence generation
objective with the auxiliary ranking supervision.
Let Lseq2seq denote the cross-entropy loss between
the generated and gold titles. The complete train-
ing objective is:

L = Lseq2seq + ϱLkendall (7)

where ϱ is a tunable hyperparameter balancing the
two components.

4 Experiments and Evaluations

4.1 Dataset
We created a custom dataset for training and eval-
uating our model by scraping title–abstract pairs
from SpringerLink journals in the machine learn-
ing domain. The dataset includes 21,545 English-
language articles, focusing on subfields like deep
learning, neural networks, and natural language
processing.

To ensure quality and consistency, we limited ab-
stracts to 128–450 tokens and titles to 8–32 tokens.
Poorly aligned title–abstract pairs were filtered
out based on cosine similarity between their em-
beddings (generated via a Sentence-Transformer
model), retaining only pairs with a similarity score
above 0.5.

For vocabulary and topic consistency across
splits, we used stratified sampling based on key
machine learning terms (e.g., ’CNN’, ’transform-
ers’, ’reinforcement learning’). The dataset was
split into training (80%, 17,236 samples), valida-
tion (10%, 2,154 samples), and test (10%, 2,155
samples) subsets, proportional to each group’s size.

Data were sourced from open access metadata
and abstracts, with no restrictive licenses from

Springer journals prohibiting their use for research
at the time of collection.

For sentence extraction, we split each abstract
into individual sentences using the Natural Lan-
guage Toolkit (Loper and Bird, 2002). To deter-
mine sentence importance, we adopt a keyword-
based scoring method. Specifically, we use Key-
BERT (Grootendorst, 2020) to extract keywords
from both the gold title and each sentence in the
abstract. We define an overlap score between a
sentence and the title as:

score(Si) =
|KW (Si) ↗KW (T )|

KW (T )
(8)

where KW (Si) and KW (T ) are the sets of key-
words extracted for sentence Si and title T , respec-
tively.

These scores serve as soft labels to supervise a
RoBERTa as a scoring model, allowing it to learn
to predict sentence relevance in alignment with the
title semantics (see Figure 2).

Extracted keywords

Splitted abstract

Target output

S1 S2 S3

0.8 0.5 0.2

sentences

labels

Sentence overlap scoring

Input

Abstract

Title

S1 S2 S3

Figure 2: Overview of the data preprocessing pipeline
for sentence extraction and labeling.

4.2 Experimental Setup
We perform a manual hyperparameter search us-
ing a dataset of 21,545 abstract–title pairs, split
into 80% training (17,236), 10% validation (2,154),
and 10% testing (2,155), preserving the original
distribution. The title generation model is initial-
ized from BART-base, and the sentence scoring
model uses a RoBERTa-base encoder. The model
is trained for 3 epochs with a batch size of 4, a
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learning rate of 2e-5, and gradient accumulation
over 8 steps, giving an effective batch size of 32.

For each abstract, the top 7 sentences are se-
lected using the sentence importance module. Up
to 30 unique permutations of these sentences are
then sampled by random shuffling and scored by
the auxiliary encoder. The highest-scoring permu-
tation is used as input to the main encoder-decoder
for title generation.

The scorer is trained with soft Kendall’s tau loss
(see Equation 6), using a temperature ϖ = 0.5 and
a ranking loss weight ϱ = 1.5. All experiments are
run on a Kaggle-provided Tesla P100 GPU, taking
about 6 hours for training the sentence extraction
model and 8 hours for the title generation model.
To ensure statistical reliability under permutation
variability, we repeat each experiment five times
without fixed seeds and report the mean and stan-
dard deviation of the evaluation metrics.

4.3 Evaluation Metrics
We evaluate generated titles using both lexical
overlap and semantic similarity metrics. For lex-
ical evaluation, we report ROUGE-1, ROUGE-
2, ROUGE-L, and ROUGE-Lsum (Lin, 2004).
ROUGE-1 and ROUGE-2 measure unigram and
bigram overlap, respectively, while ROUGE-L cap-
tures the longest common subsequence between
the generated and reference titles. ROUGE-Lsum
is designed for summarization tasks and computes
ROUGE-L at the sentence level, which better
aligns with abstractive generation tasks such as
ours.

To assess semantic similarity, we use
BERTScore (Zhang et al., 2020), which computes
token-level similarity using contextual embeddings
from a pretrained BERT model. We report the
precision, recall, and F1 scores, with F1 as the
primary semantic metric. BERTScore captures
meaning beyond surface form and correlates well
with human judgment in generation tasks.

4.4 Results and Analysis
We evaluate the effectiveness of our proposed
method by comparing it against both a strong
encoder-decoder baseline and several recent
instruction-tuned large language models (LLMs).
Table 2 reports performance across ROUGE and
BERTScore metrics.

Standard BART Baseline. We first compare
with a facebook/bart-base model trained on full

abstracts in their original sentence order, without
any sentence filtering or reordering. This model
serves as a conventional baseline for scientific
title generation. As shown in Table 2, our pro-
posed method consistently outperforms this base-
line, demonstrating the benefit of explicitly model-
ing sentence selection and coherence.

LLM-Based Generation. We compare our
method with three instruction-tuned large language
models: GPT-4.1 Mini (OpenAI, 2025), Gemini
2.5 Flash (Gemini Team, 2025), and a fine-tuned
LLaMA 3.2 (1B) (Grattafiori et al., 2024). For
GPT and Gemini, we use a zero-shot approach,
prompting each model to create a title from the
full abstract with the instruction: “Write a short,

formal and clear title for this scientific research.

Return ONLY the title: <abstract>”.
For LLaMA 3.2 (1B), we evaluate two settings.

First, we fine-tune the model on full abstracts with-
out sentence selection or reordering. This improves
over zero-shot prompting but remains weaker than
BART and our method. Second, we integrate the
same sentence selection and ordering strategy as
in our proposed method. This variant (LLaMA 3.2

+ Our Method) yields substantial gains over the
plain fine-tuned version, especially in ROUGE and
recall-oriented BERTScore, showing that sentence-
level control is crucial even for LLMs. However, it
still trails the improved BART model, suggesting
that encoder-decoder architectures remain better
suited for compact title generation under structured
input.

As shown in Table 2, the zero-shot LLMs per-
form significantly worse than the supervised base-
lines, especially in ROUGE metrics. Their outputs
often miss key technical terms or include generic
phrasing, which lowers both precision and recall.
The fine-tuned LLaMA model performs better than
the zero-shot models, showing that task-specific
training helps. However, it still lags behind our
proposed method in all metrics. This highlights
the importance of selecting relevant sentences and
presenting them in a coherent order before genera-
tion. Our method benefits from this sentence-level
control, achieving stronger coverage (high recall)
and more accurate phrasing (high precision and
F1).

Overall Performance. The results highlight
that task-specific supervision and input control
(through sentence selection and ordering) are more
effective than prompting general-purpose LLMs.
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Table 2: Performance comparison on the test set. Results are reported as the mean ± standard deviation over 5 runs.
We evaluate using ROUGE-1/2/L and BERTScore (Precision, Recall, and F1).

Model ROUGE-1 ROUGE-2 ROUGE-L Precision Recall F1

BART-base (baseline) 56.76 36.67 49.33 91.66 90.84 91.23
GPT-4.1 mini 13.41 7.16 10.37 87.83 80.71 84.12
Gemini 2.5 Flash 10.86 6.22 9.00 88.52 80.38 84.24
LLaMA 3.2 1B Instruct 30.39 17.95 26.33 83.00 85.14 83.94
LLaMA 3.2 1B (w/ Method) 44.19 24.89 35.22 87.56 91.28 89.37
Proposed Method 59.69 ± 0.33 38.99 ± 0.24 51.66 ± 0.23 92.01 ± 0.09 91.06 ± 0.06 91.52 ± 0.04

While integrating our method into LLaMA nar-
rows the gap with BART, the encoder-decoder
model still achieves the strongest balance of preci-
sion, recall, and F1. Our method therefore demon-
strates both the utility of structured input and the
architectural advantage of supervised sequence-to-
sequence learning for scientific title generation.

To complement the quantitative results, we
present a qualitative comparison using the same
abstract previously introduced in the sentence se-
lection analysis (Section 3.1). The example, shown
in the box below (see Table 3), includes the gold
title and titles generated by different models. All ti-
tles were generated using a maximum length of 32
tokens to ensure a fair comparison across models.

The gold title explicitly conveys both the core
task (sentence ordering and coherence modeling)
and the methodological framework (recurrent neu-
ral networks). The BART baseline generates a flu-
ent but generic title that lacks task specificity and
fails to mention sentence ordering. Our method
(Dual Encoder) improves on this by directly ref-
erencing sentence ordering, thus more accurately
reflecting the research focus, albeit in a simpler
phrasing.

Among the LLMs, GPT-4.1 mini produces the
most faithful and specific title. It correctly identi-
fies both the set-to-sequence modeling approach
and the sentence ordering task, resulting in a well-
structured and informative title that closely aligns
with the abstract. Gemini 2.5 Flash, while fluent
and coherent, shifts focus toward sentence repre-
sentation learning and omits the sentence ordering
aspect, partially reflecting the abstract. LLaMA-
3.2 1B Instruct captures the main task, sentence
ordering, and introduces the concept of coherence,
but phrases it in broader terms. While its title is
shorter and more abstract than the others, it still re-
flects key ideas and avoids hallucinating unrelated
terms.

The LLaMA-3.2 1B Instruct + Our Method
variant shows how structured input control influ-

ences generation. Its output is more detailed and
task-relevant than the plain LLaMA version, explic-
itly highlighting abstract ordering and positioning
the method as unsupervised deep learning. How-
ever, by adding elements like “sentence similarity”
and “paraphrase detection” not present in the ab-
stract, it becomes informative but less precise than
the gold reference.

These examples show the trade-offs across mod-
els in terms of task relevance, specificity, and flu-
ency. LLMs like GPT and Gemini generate pol-
ished and expressive outputs, but may emphasize
secondary elements or reframe the task. LLaMA,
while more concise, remains grounded in the core
ideas. In contrast, our model offers a more tar-
geted and faithful summary of the task, striking a
balance between relevance and simplicity without
introducing content outside the source abstract.

5 Input Property Analysis

To study how input characteristics affect model
performance, we examined two properties of the
abstracts: the number of sentences and the total
token count. We used a fixed test set and mea-
sured the relationship between these properties and
the performance of the model using ROUGE and
BERTScore. The results are shown in Table 4.

Across all ROUGE variants, we find a weak but
statistically significant negative correlation with
both token count and sentence count (r between
↑0.048 and ↑0.071, p < 0.05). This suggests
that longer abstracts tend to slightly reduce lexi-
cal overlap with the reference titles. In contrast,
BERTScore does not show a significant correlation
with either measure (p > 0.05), indicating that se-
mantic similarity is largely unaffected by abstract
length.

6 Discussion

Our results show that adding sentence selection and
ordering to a standard text generation model can
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Table 3: Qualitative comparison of generated titles from
various models. The yellow highlights denote outputs
from task-specific transformer models (e.g., BART base-
line and our dual-encoder method), while the green
highlights indicate outputs from general-purpose large
language models (LLMs), including GPT, Gemini, and
LLaMA.

Gold Title:
Sentence Ordering and Coherence Modeling using Recurrent
Neural Networks
GPT-4.1 mini:

Unsupervised Deep Set-to-Sequence Modeling for
Coherent Text Structure and Sentence Ordering

Gemini 2.5 Flash:

Unsupervised Deep Learning for Coherent Text Struc-
turing and Sentence Representation Learning

LLaMA-3.2 1B Instruct:

Sentence ordering: a new approach to model coher-
ence

LLaMA-3.2 1B Instruct + Our method

Ordering abstracts from scientific articles: an end-to-
end unsupervised deep learning approach based on
sentence similarity and paraphrase detection tasks.

BART Baseline:

An end-to-end unsupervised deep learning approach
for coherent sentences

Our Method (Dual Encoder):

An unsupervised deep learning approach to order sen-
tences

improve the quality of generated scientific titles.
The full model performs better than the baseline
across all metrics, though the gains are not signif-
icant. This suggests that transformer models like
BART already do a good job, but guiding them
with more structured input can still help.

Looking at the generated examples, our method
produces titles that are more relevant to the task
and better grounded in the input abstract. In com-
parison, large language models (LLMs) generate
fluent and polished titles, but sometimes add terms
that were not mentioned in the input. This makes
them less reliable in settings where accuracy mat-
ters. Among the LLMs, GPT produces the most
specific and faithful output, while Gemini tends to
generalize or shift focus slightly. LLaMA produces

Table 4: Pearson correlation between abstract length
and evaluation metrics. "Sent." refers to the number of
sentences in the abstract, and "Tok." refers to the ab-
stract token count. r is Pearson’s correlation coefficient,
and p is the corresponding significance value.

Metric Sent. r Sent. p Tok. r Tok. p

ROUGE-1 -0.048 0.025 -0.051 0.017
ROUGE-2 -0.070 0.001 -0.060 0.005
ROUGE-L -0.071 0.001 -0.065 0.003
BERTScore F1 -0.037 0.089 -0.034 0.115

a concise and mostly relevant title, but its phrasing
is more abstract.

The input property analysis shows small but
consistent negative correlations between abstract
length and ROUGE scores, meaning longer ab-
stracts tend to have less lexical overlap with the
reference titles. Correlations with BERTScore are
weaker and not significant, indicating that semantic
similarity is mostly unaffected. This suggests that
longer inputs may add wording variation without
reducing the ability to capture the main meaning,
supporting the role of sentence selection in remov-
ing less relevant content.

6.1 Why BART Outperforms Larger Models
and LLMs

Despite the emergence of larger and more sophis-
ticated language models, our results consistently
show that the BART-based approach with struc-
tured input processing outperforms both general-
purpose LLMs (GPT-4.1, Gemini 2.5) and even
LLaMA 3.2 enhanced with our proposed method.
We hypothesize several key factors underlying this
counterintuitive finding.

Task-specific architectural advantage.
BART’s encoder-decoder architecture is specif-
ically designed for text generation tasks that
require distilling and restructuring information.
Unlike decoder-only models (GPT, LLaMA),
BART can explicitly separate the encoding and
decoding phases, allowing for better control over
input representation and output generation. This
separation enables the model to better focus on the
most relevant parts of the input during encoding
while maintaining generation fluency during
decoding.

Supervised fine-tuning vs. general instruc-
tion following. Our BART model is fine-tuned
directly on the scientific title generation task with
thousands of abstract-title pairs from the target do-
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main. In contrast, general-purpose LLMs rely on
instruction-following capabilities acquired during
pre-training and instruction tuning across diverse
tasks. While this makes LLMs more versatile, it
may dilute their focus on the specific constraints
and conventions of scientific title generation, such
as maintaining technical precision while achieving
conciseness.

Input control and structured processing. The
combination of sentence selection and ordering
creates a more focused and coherent input repre-
sentation that plays to BART’s strengths. Our anal-
ysis shows that even when this structured input ap-
proach is applied to LLaMA (yielding substantial
improvements), it still falls short of BART’s per-
formance. This suggests that the encoder-decoder
architecture is better suited to leverage structured
inputs for generation tasks, as it can dedicate the
entire encoder to processing the ordered sentences
before generating the title.

Precision-recall balance in constrained gener-
ation. Scientific title generation requires a delicate
balance between covering key concepts (recall) and
avoiding extraneous information (precision). Our
results show that while LLMs excel at fluency and
creativity, they often introduce terms not present in
the source abstract or generalize concepts beyond
what is warranted. BART with structured input
achieves a better precision-recall trade-off, generat-
ing titles that are both comprehensive and faithful
to the source content.

Training data alignment and domain speci-
ficity. Our BART model is trained specifically on
scientific abstracts from machine learning journals,
allowing it to learn domain-specific patterns in ter-
minology, structure, and style. While LLMs have
seen vast amounts of text during pre-training, their
knowledge is distributed across many domains and
tasks, potentially making them less attuned to the
specific requirements of scientific title generation
in this domain.

7 Conclusion

In this work, we studied how to improve scien-
tific title generation by adding sentence selection
and ordering to a transformer-based model. These
steps help the model focus on the most important
parts of the abstract and arrange them in a more
logical way. Our experiments, both with automatic
metrics and sample outputs, showed that this extra
structure makes the generated titles more relevant

and aligned with the input.
Although the improvements over the baseline

were not significant, both selection and ordering
gave us more control over the content. This is es-
pecially useful in fields where accuracy and clarity
matter. The input property analysis showed that
abstract length impacts lexical overlap, supporting
the role of sentence selection in enhancing title rel-
evance, even if the overall impact is modest. Our
results suggest that adding simple structure to input
can make models more controllable without need-
ing more compute. In the future, these ideas could
be used as planning steps for LLMs, applied to
other types of text, or combined with human feed-
back to make better decisions. This work gives
useful insights into how to balance structure and
fluency in text generation.

Limitations

Although our method improves title generation by
optimizing sentence ordering, it has several con-
straints. The proxy supervision signal—cosine
similarity between abstract sentences and title em-
beddings—relies on pretrained encoders and may
fail to capture subtle semantics, especially for
metaphorical or abstract titles, leading to noisy
ranking guidance. The cap of 30 sampled per-
mutations limits the search space and risks over-
looking better sentence orderings in content-rich
abstracts. Our evaluation is confined to machine
learning abstracts from Springer journals, whose
relatively uniform rhetorical structures may not
reflect the variability found in biomedical, humani-
ties, or informal domains, raising concerns about
generalization. Furthermore, the absence of human
evaluation restricts interpretability, as automated
metrics alone cannot fully assess fluency or infor-
mativeness. Finally, the need for auxiliary scoring
and multiple forward passes adds computational
overhead, which may hinder scalability to large
datasets or real-time applications unless optimized
further.
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