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Abstract

Language modeling (LM) serves as the foun-
dational framework underpinning remarkable
successes of recent text generation tasks. In
this paper, we study the potential benefits of
incorporating diverse and contextualized tar-
get representations during LM training, in con-
trast to conventional approaches that rely on
fixed target representations for words. We hy-
pothesize that the use of diverse target repre-
sentations can enhance the generalizability of
LM training. To examine this hypothesis, we
introduce the word difference representation
(WDR) transformation function, which pro-
vides diverse target representations for words in
LM. In addition, we propose a simple N -gram
prediction framework and an ensemble method
to facilitate the WDR approach, and manifest
the potential of the WDR approach. Through
extensive experiments across various model
architectures—including large language mod-
els and diffusion models—and multiple bench-
mark datasets, we empirically validate our hy-
pothesis and demonstrate the practical benefits
of our proposed methodologies in terms of im-
proved text generation performance.

1 Introduction

With the remarkable advancements in deep learn-
ing techniques (Radford et al., 2019; Brown et al.,
2020), language modeling (LM) has become a cen-
tral component in text generation tasks, such as
neural machine translation (NMT) and question
answering chatbots. In general, an LM model pro-
cesses given context words through a neural net-
work to output a representation. The inner product
between this representation and the weight matrix
of the final logit layer produces scores for each
word (Bengio et al., 2000). During training, in
order to achieve a high score for the target word
after the inner product, the neural network is op-
timized to output a representation similar to the

target word’s assigned representation in the vector
space of the logit layer’s weights.

The assigned representation of each word solely
represents the target of the word. In other words,
the LM task is a sequential prediction of the unique
target representation of each word within a sen-
tence. In contrast, tasks such as image generation
that has almost infinite variety of target image rep-
resentations, the variety of the target text represen-
tation is limited to the vocabulary size regardless
of the context. Based on this limitation, we pose
the following question: “Would it be beneficial to
the training process if we provide different target
representations for the same word depending on
the context?". Regarding the practical benefit of
this question, we expect that incorporating diverse
target representations would lead to greater diver-
sity in gradient computations during backpropaga-
tion. Based on prior analysis (Yin et al., 2018),
the increased gradient diversity can enhance the
generalizability of the model.

In this paper, we explore the question above by
proposing a contextual transformation function -
word difference representation (WDR). WDR con-
textualizes subsequent words (N -gram) through
an arithmetic subtraction operation, and we incor-
porate WDRs as additional, diverse target repre-
sentations alongside the original ones. To verify
the effectiveness of the WDR approach in contrast
to baseline approaches, we first develop a simple
N -gram prediction framework with minimal modi-
fications to the conventional LM model, and then
we apply the WDR approach to the simple N -gram
framework. Furthermore, we propose an ensemble
method that leverages N -gram predictions to en-
hance next-word prediction, which is the primary
objective of the conventional LM model.

We experimented with our proposed methodolo-
gies across multiple baseline model architectures,
such as conventional Transformer-based models
(Vaswani et al., 2017), large language models (GPT-
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Figure 1: Model illustrations of (a) conventional LM, (b) simple N -gram LM, and (c) WDR N -gram LM when
N = 4. Note that all of the drawn logit layers above the MLP layers share the parameters. Red diagonal lines in (c)
on lines from logit layer to !r

ix
e,l
t indicate gradient detaching operation.

NEO series) (Black et al., 2021), and the text diffu-
sion model (Ye et al., 2023; Gao et al., 2022), using
multiple benchmark datasets for LM and various
conditional text generation tasks. In the experi-
ment results, we empirically validate that applying
WDR enhances gradient diversity and boosts per-
formance while causing only a slightly increased
parameter count and computational cost. These
findings provide evidence that incorporating di-
verse target representations is beneficial for general
text generation tasks. Additionally, our results indi-
cate that our ensemble method is also advantageous
compared to conventional LM models.

2 Background

2.1 Language Modeling

As background knowledge, in this section we de-
scribe the conventional training framework of neu-
ral network based LMs.

A sentence consists of words X =
{x1, x2, · · · , xT }, where xt → V , and T and
V indicate the length of the sentence and the
vocabulary set, respectively. Conventional LMs
compute the likelihood of a word conditioned on
its preceding words in the sentence, p(xt|x<t).

First, words are mapped to embedding vectors
(Mikolov et al., 2013), and the encoded hidden
state at time-step t is formulated as follows:

ht = Encω({xe
1,x

e
2, · · · ,xe

t→1}) → Rd, (1)

where xe
t → Rd means the embedded vector of xt,

Encω is an encoder model with its parameter set
ω, and d is the dimension of the encoded hidden
state and the embedding vector spaces. Recently,
most LMs use Transformer (Vaswani et al., 2017)
as their encoder architecture. After encoding, the
hidden state is linearly transformed to a logit value

of each word in V . Finally, the likelihood of the
predicted word is calculated as follows:

p(x̂t|x<t; ω) = softmax(x̂l
t),

x̂l
t = Wlht = Wlx̂e,l

t , (2)

where Wl → R|V|↑d is the weight matrix of the
logit layer.

Throughout this paper, we consider the logit
layer’s weight matrix as a word embedding set,
Wl = [xe,l

1 ,xe,l
2 , · · · ,xe,l

|V|]
↓, where each d-

dimensional embedding vector is aligned with the
target word. The superscript notation (e, l) means
that it is an embedding vector at the logit layer.
From this point of view, the hidden state, ht, could
be understood as the predicted word embedding,
x̂e,l
t . The inner product of Wl and x̂e,l

t outputs the
predicted score of each word based on the similar-
ity between the embedding and predicted vectors.

Then, the model learns to minimize the negative
log-likelihood (NLL) loss as follows:

L(X, ω) = ↑
T∑

t=1

log p(x̂t = xt|x<t; ω). (3)

This process is illustrated in Fig.1(a).

2.2 N -gram Prediction

The conventional LM training framework follows
the ‘next word prediction’ approach that predicts
a word given the whole previous words. Despite
the successes, this approach might lead models to
overfit to local dependencies rather than capturing
long-term dependencies between words. This ten-
dency arises from the strong dependencies found
in some phrases or word pairs, such as “Barack
Obama" and "Harry Potter" (Qi et al., 2020).
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A way of mitigating this problem involves pre-
dicting not solely the next word but also subse-
quent words in later time-steps such as N -gram
prediction. Researchers (Sun et al., 2019; Joshi
et al., 2020; Xiao et al., 2020; Qi et al., 2020)
have adopted this N -gram prediction methodology
for the masked language modeling during the pre-
training phase of large language models (Devlin
et al., 2018). Similar approaches have been applied
to the NMT task (Shao et al., 2018; Ma et al., 2018;
Shao et al., 2020). To utilize the N -gram prediction
method, previous works significantly modified the
model architecture, the loss function, or the vocab-
ulary set. In this paper, as the development base of
our main idea (diverse target representations with
WDR), we introduce a ‘simple N -gram prediction’
method that requires the least modifications from
the conventional LM so that is transparent to ana-
lyze the main idea’s advantage.

3 Proposed Methods

In this section, we introduce all of our proposed
methodologies: (1) a simple N -gram prediction
framework that becomes the development’s base,
(2) the main WDR idea and its application to sev-
eral LM architectures, and (3) ensemble method
applicable to N -gram prediction.

3.1 Simple N -gram Prediction

The core idea of our proposed simple N -gram pre-
diction method is adding a multi-layer perception
(MLP) layer to predict a future word’s embedding
(logit layer’s) given the same hidden state of the
conventional LM. This process is formulated as
follows:

x̂e,l
t+n = MLPn(ht). (4)

For instance, assuming N is 4, three MLP layers,
MLP 1, MLP 2 and MLP 3, are employed to pre-
dict x̂e,l

t+1, x̂e,l
t+2, and x̂e,l

t+3 respectively, as shown
in Fig.1(b). Note that the conventional LM model
predicts x̂e,l

t , so a total 4-gram words are predicted.
Then, we compute the likelihoods of the future
target words, p(x̂t+1|x<t; ω), p(x̂t+2|x<t; ω), and
p(x̂t+3|x<t; ω), following each logit layer and the
softmax function. Instead of using separate logit
layers for each future word prediction, we share the
parameters across all logit layers, including the con-
ventional LM model’s original logit layer. There-
fore, this approach increases just a small amount of
parameters for each additional MLP layer. Finally,
the individual word prediction loss and the total

loss are formulated as follows:

Ln = ↑
T→n∑

t=1

log p(x̂t+n = xt+n|x<t; ω), (5)

Ltot
N =

1

2
L0 +

ε

2N ↑ 2

N→1∑

n=1

Ln, (6)

where ε < 1 is a hyperparameter to control the
additional loss term’s influence. Note that L0 is the
same as the conventional LM’s loss, Eq.(3).

The framework of the simple N -gram prediction
method is quite similar to the recent speculative
decoding approaches proposed by (Gloeckle et al.,
2024; Cai et al., 2024) which also add additional
heads on top of the conventional LM’s encoder to
predict future words with shared encoder and logit
layer like our method. As independently developed,
however, there are several differences. First, we
employ an MLP layer with ReLU activation ex-
pecting that the limited capacity of the MLP layer
appropriately regularizes the main encoder, Encω,
to find simultaneously informative hidden states
for all N -gram predictions. Second, since the next
word typically has stronger dependencies with the
preceding words than the other future words do, we
multiply the original loss with only 1/2 while we
multiply the future words’ losses with 1

2N→2 and
the scalar hyperparameter ε in Eq.(6).

3.2 Word Difference Representation (WDR)

In this section, we explain the concept of WDR
and how to provide diverse target representations
with WDR to simple N -gram prediction LMs and
diffusion model-based LMs (Li et al., 2022; Gao
et al., 2022; Ye et al., 2023).

3.2.1 Definition of n-level WDR

As we mentioned, WDR is a function that trans-
forms subsequent N words’ embedding vectors
into a contextualized form. WDR’s transformation
is based on a form of word embedding composi-
tions: the difference vector, xe

t+1 ↑ xe
t as its name

implies. Since (Mikolov et al., 2013) demonstrated
that arithmetic compositions of learned word em-
bedding can convey semantic meanings, many re-
searchers have explored the word embedding com-
positionality (Xu et al., 2015; Hartung et al., 2017;
Poliak et al., 2017; Scheepers et al., 2018; Li et al.,
2018; Frandsen and Ge, 2019). Their studies em-
ployed composed word embeddings as model in-
puts instead of original word embeddings. In con-
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trast, we use the composed word embeddings as
the target representation.

Given an embedding vector sequence
{xe

1,x
e
2, · · · ,xe

T }, the 1-level WDR at the
time-step t is defined as follows:

!1x
e
t =

{
xe
t+1 ↑ xe

t if 1 ↓ t < T,

xe
T if t = T.

(7)

In an inductive manner, the n-level WDR at the
time-step t when n > 1 is defined as follows:

!nx
e
t =

{
!n→1xe

t+1 ↑!n→1xe
t if 1 ↓ t < T,

!n→1xe
T = xe

T if t = T.

(8)

Based on the definitions of Eqs. (7) and (8),
the n-level WDR can be represented by a linear
combination of original word embeddings. For
example, the 2- and 3-level WDRs at time-step
t can be represented as follows: !2xe

t = xe
t+2 ↑

2xe
t+1+xe

t and !3xe
t = xe

t+3↑3xe
t+2+3xe

t+1↑xe
t ,

respectively. In this manner, we can derive the
formulation of n-level WDR as follows:

!nx
e
t =

n∑

i=0

(
n

i

)
(↑1)ixe

t+(n→i), (9)

where
(n
i

)
= n!

(n→i)!i! is the binomial coefficient.
This equation holds for every positive integer of n
and for every time-step t when t ↓ T ↑ n. See
Appendix A.1 for a proof of this equation. From
this equation, n-level WDR can be easily recon-
structed to the original word embedding. For exam-
ple, the 1-level WDR, xe

t+1 can be reconstructed by
adding xe

t to !1xe
t . Likewise, xe

t+n can be recon-
structed by adding ↑

∑n
i=1

(n
i

)
(↑1)ixe

t+(n→i) to
!nxe

t (note that the first term of the right-hand side
of Eq.(9) is xe

t+n). For simplicity, we use a new
notation for the conjugate term that reconstructs
the original embedding by addition to the n-level
WDR as follows:

!r
nx

e
t = ↑

n∑

i=1

(
n

i

)
(↑1)ixe

t+(n→i), (10)

which leads to !nxe
t +!r

nx
e
t = xe

t+n.
The subtracting operations of generating n-level

WDRs, Eq.(8), and their reconstruction process
(note the reconstruction conjugate term, Eq.(10), is
the subtraction of the original embedding and n-
level WDR) are parallelizable, so that they do not
impose computational overhead in long sequence.

3.2.2 WDR on Simple N-gram LM

The application of WDR to simple N -gram LM
(we call it ‘WDR N -gram LM’) follows the idea
of adding additional MLP layers and predicting
future words. However, in WDR N -gram LM,
the MLPn layer outputs !nx̂

e,l
t instead of x̂e,l

t+n.
Then we produce its corresponding reconstruction
conjugate term, !r

nx
e,l
t , based on the logit layer’s

embedding matrix and target words. Adding those
two, !nx̂

e,l
t +!r

nx
e,l
t , yields x̂e,l

t+n as in the simple
N -gram LM. Then, we take the processes of the
logit, likelihood, and loss computations as in the
simple N -gram LM.

An essential design of this framework is de-
tachment of the produced reconstruction conjugate
term, !r

nx
e,l
t , during the backpropagation process.

The absence of this detachment might lead the
model to adjust the logit layer’s weight matrix in
a distorted manner, because the input of the logit
layer will be recursively produced from itself.

Unlike the simple N -gram LM, the individual
NLL loss, Eq.(5), decreases when the model pre-
dicts more accurate n-level WDR, !nx̂

e,l
t , because

it will output more accurate future word’s embed-
ding after adding the reconstruction conjugate term
!nx̂

e,l
t +!r

nx
e,l
t = x̂e,l

t+n. Since the reconstruction
conjugate term is detached, the model would learn
to predict !nx

e,l
t , which is true n-level WDR. In

other words, WDR N -gram LM’s training frame-
work can train LM with diverse and contextualized
target representations given the same target word.
The entire process of WDR 4-gram LM example is
illustrated in Fig.1(c).

3.2.3 WDR on Diffusion-based LM

Since their great success in image generative mod-
els (Ho et al., 2020; Ramesh et al., 2022), diffusion
models have been applied to text generation tasks
(Li et al., 2022). However, compared to image dif-
fusion models, text diffusion models’ performances
are less impressive, and some prior studies have in-
vestigated the reasons behind the limited progress
of text diffusion models, particularly focusing on
the diffusion and denoising processes on the word
embedding space (Ye et al., 2023). A common ar-
gument from their analyses starts from the discrete-
ness of the embedding vectors which form a finite
number of clusters within the high-dimensional em-
bedding space. Since the small noises of early dif-
fusion steps are not significant enough to move an
embedding vector from one cluster to another, the
denoising process that trains the model becomes

750



trivial. We conjecture that providing diverse target
representations can explicitly mitigate this problem
because diversifying word embedding vectors will
reduce the discreteness.

Given this perspective, we apply our WDR idea
to the diffusion-based LM, such as DINOISER (Ye
et al., 2023) and Difformer (Gao et al., 2022). As
in the application of WDR to simple N -gram LM,
we add extra heads to predict WDRs beside the
original head that predicts the original embedding
given t-times diffused embeddings. Similarly, we
compute the reconstruction conjugate term from
the shared logit layer with detachment, and then
we reconstruct the original embedding. Finally, the
diffusion loss for each head’s prediction is formu-
lated as follows (the original diffusion loss is when
n = 0):

Ld
n =

T∑

t=n+1

↔ x̂e,l
t,0 ↑ xe,l

t,0 ↔
2
2, (11)

x̂e,l
t,0 =

{
f(xe,l

t,k; ω) if n = 0,

MLPn(f(xe,l
t,k; ω)) +!r

nx
e,l
t,0 if n > 0,

(12)

where f(xe,l
t,k; ω) is the diffusion model’s output

given k-times diffused embedding vector, xe,l
t,k,

with parameter set, ω. Analogously to the total loss
of simple N -gram LM, we average the original and
additional diffusion losses. See the previous works
(Ye et al., 2023; Gao et al., 2022) for more details
on the diffusion and denoising processes as well
as the final loss. We followed their methodologies
except for the changes to apply the WDR.

3.3 Ensemble Method to Leverage N -gram

Predictions for Next Word Prediction

In this section, we propose a new ensemble method
to incorporate the N -gram predictions into the pro-
cess of the next word prediction. The encoded
hidden state ht represents the computed hidden
state given the inputs up to time-steps (t↑ 1). Dur-
ing testing, in addition to the predicted embedding
x̂e,l
t from the conventional LM, the MLPn layer

of simple N -gram LM can estimate the target word
for time t given ht→n. In total, we can get N pre-
dicted embeddings for the current time-step. We
ensemble these predicted embeddings just before

Table 1: Word-level PPL results of the preliminary ex-
periment with Transformer decoder-based LMs on the
PTB dataset. We tried several ϑ values in Eq.(13).

Model Test PPL
ϑ=0.0 0.2 0.4 0.6

TF 161.0 - - -
TF+Sim N=2

N=3
N=4

150.8
153.3
158.1

134.6
134.4
133.6

135.3
133.0
129.1

156.3
151.9
147.1

TF+WDR N=2
N=3
N=4

149.0
153.1
150.5

136.5
136.1
131.6

129.8
128.2
124.1

128.1

128.8
127.5

Figure 2: Gradient diversity comparison between simple
4-gram LM and WDR 4-gram LM.

the logit layer using the following formulation:

x̂e,l
t,ens = (1↑ϑ)x̂e,l

t +
ϑ

N ↑ 1

N→1∑

n=1

MLP i(ht→n),

(13)
where ϑ is a scalar value between 0 and 1, which
controls the influences of future word predictions
(but derived from past time-steps) on the current
word prediction. Similar to the rationale behind
the dominance of the original NLL loss in its total
loss formulation, Eq.(6), we do not equally average
the original predicted embedding with others. In
the case of WDR N -gram or diffusion LM, we
ensemble MLP i(ht→n) + !r

nx
e,l
t→n = x̂e,l

t in the
summation part in Eq.(13).

After this ensemble computation, we feed it to
the logit layer and compute the next word’s like-
lihood. During testing, this ensemble likelihood
result is used to compute perplexity (PPL) in LM
tasks or serving as candidate scores for beam search
in NMT tasks. It is natural to expect that our ensem-
ble method is beneficial if the additional heads pre-
dict independent (and effective) information from
the original heads.
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Figure 3: From the left-to-right, they are visualizations of the original embeddings (first), 1-level WDR and the plot
zoomed in around the original word ‘to’ (second and third), and 2-level WDR (last), respectively. In the third plot,
(‘to-word’) means the 1-level WDR vector, that is xe,l

to ↑xe,l
word based on the word ‘to’ fragment within the sentence.

4 Experiments and Results

We conducted preliminary analysis and main ex-
periments. During the preliminary analysis, we
trained the basic LM model on the Penn TreeBank
(PTB) dataset (Marcus et al., 1993) to verify the ex-
pectations of our proposed methodologies. During
the main experiments, we conducted LM and vari-
ous conditional text generation tasks with multiple
benchmark datasets and multiple baseline models,
including an LLM, to demonstrate practical advan-
tages of our proposed methodologies. Due to the
page limit, we describe the details of the dataset,
model architecture, and training scheme in Appen-
dices A.2 and A.3.

4.1 Preliminary Analysis

As a preliminary analysis, we trained Transformer
(TF) decoder-based LM models by applying sim-
ple N -gram and WDR N -gram (‘TF+Sim’ and
‘TF+WDR’) on the PTB dataset. During testing,
we applied our ensemble method with varying the
ϑ value. The total number of parameters of the
TF baseline is 12M, and our proposed simple and
WDR methods increase only 0.1M parameters for
additional MLP layer. The details of the model ar-
chitecture and training method for this experiment
are described in Table 6 in Appendix A.3 as ‘Small
Dec. TF LM’. Also refer to Section A.2 for the
details of PTB data preprocessing.

4.1.1 Perplexity of the Models

Table 1 presents the outcomes of the experiments.
We trained the model of each configuration five
times with different random seeds, and we report
the average PPL scores. As demonstrated in pre-
vious N -gram prediction approaches (Sun et al.,
2019; Joshi et al., 2020; Xiao et al., 2020; Qi et al.,
2020; Gloeckle et al., 2024), both ‘TF+Sim’ and
‘TF+WDR’ outperform the conventional LM base-
line. More interestingly, we found that ‘TF+WDR’

is generally better than ‘TF+Sim’ in various N
settings. Our ensemble method consistently im-
proves performance compared to the non-ensemble
ones (where ϑ=0.0). More importantly, ‘TF+WDR’
models bring greater improvements with the en-
semble method than ‘TF+Sim’. For example,
‘TF+WDR’ models’ improvements with the ensem-
ble method is 24.07 on average, while ‘TF+Sim’
models’ is 21.83. We interpret that WDR method
trained the additional heads to predict more inde-
pendent and effective information.

4.1.2 Comparison of Gradient Diversity

As mentioned in the introduction section, diverse
target representations can bring a higher gradient
diversity during training. To verify this expectation,
during training, we measured ‘gradient diversity
(GD)’ (Yin et al., 2018) as follows:

GD(D, ω) =

∑|D|
i=1 ||gi||22

||
∑|D|

i=1 gi||22
,

=

∑|D|
i=1 ||gi||22∑|D|

i=1 ||gi||22 +
∑

i ↔=j↗gi, gj↘
, (14)

gi = ≃ωLtot
N (Xi, ω),

where D = {X1, X2, · · · , X|D|} is a mini-batch,
|| · ||22 is the squared L2 norm operation, ↗·, ·↘ is
the inner product operation, and ≃ω is gradient
operator with respect to ω. This metric is large
when the inner product terms in the denominator
are small, which means the gradients are different
from each other.

Fig.2 demonstrates the GD history of ‘TF+Sim
N=4’ and ‘TF+WDR N=4’ models during train-
ing. ‘TF+WDR N=4’ generally received higher
GD than ‘TF+Sim N=4’. As the stochastic prop-
erty of stochastic gradient descent is known to en-
hance generalizability compared to full-batch gra-
dient descent (Hardt et al., 2016; Yin et al., 2018),
higher GD may offer similar advantages due to

752



higher stochasticity. Given this understanding, we
believe that WDR-based training could be benefi-
cial to improve generalizability.

4.1.3 Visualization of the Representations

To gain a more profound understanding of WDR’s
effect on target representations, we collected 1,270
actual target representations of the conventional
LM model’s training, which are the logit layer’s
embedding vectors corresponding to target words
from the PTB testset. Also, we computed 1- and
2-level WDRs with the collected embeddings, and
added them to the collection, resulting in 3,810
representations in total. Finally, we reduced the
dimension of the total collection to 2-dimension
with the t-SNE algorithm (Van der Maaten and
Hinton, 2008).

Fig.3 shows the collected representations in a
2-dimensional space. The first plot illustrates the
original embeddings, xe,l. Note that the represen-
tations of frequent words (e.g., ‘in’, ‘to’, and ‘the’)
may be included more times than other words in the
collection. We interpret that this is the reason why
t-SNE places frequent words distant from other less
frequent words to resemble the non-uniform dis-
tribution of the collection. On the other hand, the
1-level WDR representations, !1xe,l, look more
diverse compared to the original embeddings as
in the second plot. For example, by composing
adjacent words such as ‘want’, ‘unable’, ‘returned’,
into the frequent word ‘to’, it diversifies the embed-
ding representations according to its previous word
as in the third plot which is zoomed in. The 2-level
WDR looks more diverse than the 1-level WDR as
in the last plot. Based on this analysis, we believe
that WDR N -gram LM actually receives diverse
target representations.

4.2 Language Modeling Experiments

Our main LM experiments consist of training
conventional LM models on multiple benchmark
datasets and fine-turning the pre-trained LLM. We
trained Tensorized Transformer (TT) (Ma et al.,
2019) and Reformer (RF) (Kitaev et al., 2020)
models on PTB, WikiText-2 (W2), Text8 (T8),
and WikiText-103 (W103) datasets (Mikolov et al.,
2014; Merity et al., 2016) for the conventional
LM experiments. For the fine-tuning experiments,
we fine-tuned GPTNEO 1.3B model (Black et al.,
2021) on the W2 dataset. We note that our simple
and WDR methods increased around 3.43% of total
parameters out of the baselines’ on average. For

Table 2: Results of the conventional LM experiments.

Model Test Word-level PPL
PTB W2 T8 W103

TT (baseline) 55.0 56.1 121.4 20.1
TT+Sim

Ensemble
51.6
45.5

62.0
56.0

106.5
89.5

17.1
17.9

TT+WDR
Ensemble

47.5
44.4

57.7
53.8

91.7
90.2

16.8

16.9
RF (baseline) 28.0 31.6 64.3 50.3

RF+Sim
Ensemble

27.8
26.4

31.6
31.0

62.1

62.2
43.1
43.4

RF+WDR
Ensemble

26.0
25.9

31.5
30.8

62.2
62.1

41.8

41.9

Table 3: Results of LLM fine-tuning experiments.

Model WikiText-2
PPL (w/ Ens.)

GPTNEO 1.3B 13.25
GPTNEO 1.3B + Sim 13.13 (12.93)
GPTNEO 1.3B + WDR 13.00 (12.91)

more details, refer to Appendices A.2 and A.3.

Table 2 presents the entire results of the con-
ventional LM experiments. The results show that,
with the exception of TT-based models on W2, our
proposed N -gram LM models consistently either
match or surpass the baselines, even without the
ensemble method. Remarkably, WDR N -gram
LM models generally improve performance on top
of the simple N -gram LM models. Upon apply-
ing our proposed ensemble method, they gener-
ally exhibit improvements over their non-ensemble
counterparts, except the models trained on W103.
Notably, the effect of the ensemble method is rela-
tively significant in the smaller datasets (PTB and
W2) rather than the larger datasets (T8 and W103).

Table 3 presents the results of our LLM fine-
tuning experiments. Each configured model was
trained three times with different random seeds.
Notably, our WDR model outperformed the simple
baseline. Specifically, the average PPL of WDR
model, 13.00, surpasses the 95% confidence in-
terval of the simple model’s result, which is 13.02
(without ensemble). Furthermore, we observed that
our ensemble method generally leads to improved
performance. Based on these LM results, we argue
that providing diverse target representations can
offer advantages over the conventional reliance on
fixed target representations alone.
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Table 4: NMT results of conventional Transformer mod-
els on several benchmark datasets. The left and right
numbers of ‘/’ mean En-to-(De or Tr) and (De or Tr)-to-
En translation results, respectively.

Model BLEU Scores
IWSLT WMT14 WMT18

TF 27.6/32.5 26.5/30.4 11.9/18.2
TF+Sim

Ensemble
28.0/33.0
28.3/33.4

26.2/30.9
26.3/31.0

11.6/18.2
11.6/18.3

TF+WDR
Ensemble

27.9/33.5
28.3/34.0

26.7/31.1
26.7/31.2

11.8/18.5
11.9/18.8

Table 5: Results of WDR applications on diffusion mod-
els: DINOISER and Difformer.

Baseline
Arch. Task BLEU Scores

Baseline +WDR

DINOISER IWSLT14 En2De 25.76 26.26
IWSLT14 De2En 31.26 31.83

Difformer QQP 28.62 29.73
WikiAuto 34.33 37.53

4.3 Conditional Text Generation Experiments

To further investigate the benefits of our proposed
methodologies, we conducted multiple conditional
text generation tasks, which can be regarded as
conditional language modeling tasks. Our experi-
ments are divided into two categories: (1) train-
ing conventional Transformer models on NMT
datasets such as IWSLT14 En-De (Hwang and
Jeong, 2023), WMT14 En-De (Vaswani et al.,
2017), and WMT18 En-Tr (Bojar et al., 2018);
and (2) training text diffusion models such as DI-
NOISER and Difformer on IWSLT14 En-De, QQP
(text paraphrasing), and WikiAuto (text simplifi-
cation) (Gao et al., 2022). We note that both the
simple and WDR methods increased the total num-
ber of parameters by approximately 2.45% over the
baselines on average. For further details on models
and datasets, see Appendices A.2 and A.3.

Table 4 presents the conventional Transformer-
based NMT experiment results based on Sacre-
BLEU (Post, 2018) evaluation metric. While
simple N -gram method, ‘TF+Sim’, is sometimes
worse than ‘TF’ baseline, WDR N -gram method,
‘TF+WDR’, always outperforms or is similar to the
baseline. Notably, the integration of the ensemble
method from either of ‘TF+Sim’ or ‘TF+WDR’ fur-
ther increases performances. Specifically, we note
that ‘TF+WDR’ with ensemble method improves
performances by 0.7⇐1.5 BLEU scores compared
to ‘TF’ baseline on both translation directions of

‘IWSLT14 En-De’, and German-to-English transla-
tions of ‘WMT14 En-De’ testsets.

The N -gram prediction approaches are more
effective for De-En translation compared to En-
De translation in ‘IWSLT14 En-De’ and ‘WMT14
En-De’ experiments. We believe that the differ-
ence in word variety between the two languages
plays a key role. We analyzed the ‘WMT14 En-
De’ training dataset (subword-level tokenized) and
found that English has around 33.6K unique uni-
grams and 6.7M unique bigrams, while German has
around 34.9K unique unigrams and 9.3M unique bi-
grams. This suggests that De-En translation might
have simpler local dependencies to learn compared
to En-De translation due to the lower number of
unique bigrams. Considering simple local depen-
dencies might lead to the over-fitting problem, we
believe that this is a potential reason why N -gram
prediction approaches, which can help mitigate
over-fitting to local dependencies, are more effec-
tive for De-En translation.

Table 5 presents the experimental results of
baseline diffusion models and our WDR models
(‘+WDR’), evaluated using BLEU scores. Note
that we did not apply the simple N -gram method,
since generic text diffusion models operate in a
non-autoregressive decoding manner, predicting
all words simultaneously. By applying our WDR
method, we aim to leverage diverse target repre-
sentations. Notably, our WDR models improved
BLEU scores by 0.50, 0.57, 1.11, and 3.20 on the
IWSLT14 En2De, IWSLT14 De2En, QQP, and
WikiAuto datasets, respectively. Considering the
results across all conditional text generation tasks,
our WDR approach is also beneficial for a wide
range of practical conditional LM tasks.

5 Limitations

During the hyperparameter search in the prelim-
inary analysis (Sec. 4.1), we observed that when
N is larger than 4, both simple and WDR N -gram
LMs consistently performed worse. We hypoth-
esize that predictions far into the future are too
difficult to learn, and thus may have regularized the
encoder in a disadvantageous way. Unfortunately,
our WDR method could not overcome this limi-
tation under the current experimental setting. In
future work, we aim to develop a novel approach
that leverages diverse target representations to ad-
dress the issues associated with large N , or an alter-
native approach that does not rely on the N -gram
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prediction framework.

6 Conclusion

In this work, we explored the potential of using
contextualized target representations for training
language models. We proposed WDR function,
which transforms word fragments into contextual-
ized forms and uses them as auxiliary target repre-
sentations alongside the original targets. Building
on our simple N -gram prediction framework, we
applied WDR and validated its practical advan-
tages across various models and datasets in both
language modeling and conditional language mod-
eling tasks. We found that applying WDR increases
gradient diversity, which in turn improves general-
ization and overall performance.
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A Appendix

A.1 Proof of Eq.(9)

We provide a proof of Eq.(9) with the induc-
tion method. To avoid confusion, we temporarily
change the notation of !nxe

t in conjecture Eq.(9)
to !̂nxe

t until it is proved. Based on the definitions
of the 1 and n-level WDR, Eq.(7) and Eq.(8), we
can verify the initial condition, that is n = 1, holds
as follows:

!1x
e
t = xe

t+1 ↑ xe
t

=

(
1

0

)
(↑1)0xe

t+1 +

(
1

1

)
(↑1)1xe

t

=
1∑

i=0

(
1

i

)
(↑1)ixe

t+(1→i)

= !̂1x
e
t .

Therefore, the conjecture holds for the initial con-
dition. Then, by following the induction method,
we assume the conjecture at n-level is true, that
is !̂nxe

t = !nxe
t . Then, the (n + 1)-level WDR

from the definition Eq.(8) is derived to !n+1xe
t =

!nxe
t+1 ↑!nxe

t = !̂nxe
t+1 ↑ !̂nxe

t . Each term
is derived as follows:

!̂nx
e
t+1 =

(
n

0

)
(↑1)0xe

t+n+1 +

(
n

1

)
(↑1)1xe

t+n

· · ·
(

n

n↑ 1

)
(↑1)n→1xe

t+2 +

(
n

n

)
(↑1)nxe

t+1,

↑!̂nx
e
t =

(
n

0

)
(↑1)1xe

t+n +

(
n

1

)
(↑1)2xe

t+n→1

· · ·
(

n

n↑ 1

)
(↑1)nxe

t+1 +

(
n

n

)
(↑1)n+1xe

t ,

!̂nx
e
t+1 ↑ !̂nx

e
t =

(
n

0

)
(↑1)0xe

t+n+1+

((
n

0

)
+

(
n

1

))
(↑1)1xe

t+n+

· · ·
((

n

n↑ 1

)
+

(
n

n

))
(↑1)nxe

t+1+

(
n

n

)
(↑1)n+1xe

t

=
n+1∑

i=0

(
n+ 1

i

)
(↑1)ixe

t+(n+1→i)

= !̂n+1x
e
t .

Note that the binomial coefficient,
(n
i

)
, is the n-th

row and i-th value of Pascal’s triangle, and it satis-
fies

( n
i→1

)
+

(n
i

)
=

(n+1
i

)
. Based on this outcome,

the conjecture holds for (n+1)-level if the n-level
is true. Therefore, the conjecture is proved.

A.2 Dataset Details

In this section, we describe the details of the
datasets that we utilized in LM and conditional
text generation experiments (Sections 4.2 and 4.3).

A.2.1 Language Modeling Dataset

Description

For the training of conventional LM models, we
utilized four datsets, such as PTB (-, 0.9M tokens,
10K vocabulary), WikiText-2 (W2, 2M tokens, 33K
vocabulary), Text8 (T8, 15M tokens, 254K vocab-
ulary), and WikiText-103 (W103, 103M tokens,
268K vocabulary) (Mikolov et al., 2014; Merity
et al., 2016). We followed the open sources for data-
related processes (e.g., download, tokenization, vo-
cabulary, and train/valid/test sets splitting). Specifi-
cally, the W2 and T8 datasets were sourced from
the GitHub repository1, while the PTB and W103
datasets were sourced from the Tensorized Trans-
former (Ma et al., 2019)’s GitHub repository2. For
the fine-tuning LLM task, we utilized W2 dataset
with different data processes based on GPTNEO
models’ open source from Huggingface3.

A.2.2 Conditional Text Generation Dataset

Description

For the training of the conventional Transformer
model for NMT, we utilized three datasets, such as
‘IWSLT14 English-German’(En-De, 160K training
pairs) (Hwang and Jeong, 2023), ‘WMT14 English-
German’(En-De, 3.9M training pairs) (Vaswani
et al., 2017), and ‘WMT18 English-Turkish’ (En-
Tr, 207K training pairs) (Bojar et al., 2018). We
used the same preprocessing, tokenization, and sub-
word byte-pair encoding methods with (Ott et al.,
2019). We collected 10K, 10K, 32K most frequent
subwords to organize vocabularies for datasets, re-
spectively. For test sets, we used translations of
TED and TEDx talks for IWSLT14 En-De. Also,
we used Newstest18 and Newstest14 for WMT18
En-Tr and WMT14 En-De, respectively. For the
IWSLT14 En-De dataset used for the training of
DINOISER model, we downloaded the open pre-
processed dataset of the Github4 as the DINOISER
baseline used. For the QQP (145K training pairs,

1https://github.com/chakki-works/chazutsu
2https://github.com/szhangtju/The-compression-of-

Transformer
3https://huggingface.co/EleutherAI/gpt-neo-1.3B
4https://github.com/shawnkx/Fully-NAT#dataset
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Table 6: Model and optimizer configurations of Trans-
former architectures used in the preliminary experiment
of LM and NMT tasks. We used the same notation for
model configurations as in (Vaswani et al., 2017), except
for the number of layers (# of Layers) and multi-head
attention’s heads (# of Heads). ‘ISRS’ means the inverse
square root learning rate scheduler (Ott et al., 2019) and
‘# of Tokens’ indicates the total number of tokens in a
mini-batch at each iteration.

Config.
Small
Dec.

TF LM

Small
Enc-Dec
TF NMT

Base
Enc-Dec
TF NMT

dmodel 256 512 512
dff 2100 1024 2048

dk = dv 64 64 64
Pdrop 0.3 0.3 0.1
ϖls 0.1 0.1 0.1

# of Layers 6 6 6
# of Head 4 4 8
Optimizer Adam Adam Adam

Learning Rate 0.00025 0.0005 0.001
Scheduler None ISRS ISRS

# of Tokens 4K 4K 25K
Patience 50 50 50

text paraphrasing) and WikiAuto (678K training
pairs, text simplification) datsaets that we used for
the training Difformer models, we mainly followed
the instructions of their official Github5.

A.3 Model and Training Details

We explain the details of the model and training
scheme that were used in our experiments (Sections
4.2 and 4.3) in this section.

A.3.1 Language Modeling Experiments

For the models and training of the conventional
LM experiments, including ‘TT’, ‘RF’ baselines,
and applications of our simple and WDR N -gram
LM models, we followed the configurations re-
ported in the previous works’ papers (Ma et al.,
2019; Kitaev et al., 2020) with several changes
as described in Table 7. The total parameters of
(TT, RF) baselines according to datasets are (6.7M,
15.3M) for PTB and W2, (82.4M, 236.6M) for T8
and W103, respectively. Both of our proposed sim-
ple and WDR methods increased the number of
parameters by 0.1M for TT and 0.5M for RF per
an additional MLP layer regardless of the type of
dataset. The optimal hyperparameter settings of
our proposed methods were found after the hyper-

5https://github.com/zhjgao/difformer

parameter search. They are described in Table 8.
Refer to the previous works for all of the details.
The experiments of small datasets, PTB and W2,
took around 3 hours on average based on a single
GTX1080Ti GPU, while the experiments of large
datasets, T8 and W103, took around 24 hours in
average based on a single RTX3090 GPU. Unex-
pectedly, we found that the PPL of ‘RF (baseline)’
on W103 in Table 2 is unsatisfying compared to
other results of PTB, W2, and T8 datasets. We
trained ‘RF’ on W103 based on the same provided
source code with the default configuration except
for a few changes described in Table 7. Note that
‘RF+Sim’ and ‘RF+WDR’ models were trained
under the same setting for fair comparisons.

For the fine-tuning of GPTNEO 1.3B pre-trained
model, we downloaded the pre-trained models and
their tokenizers with Huggingface API. We fully
fine-tuned the pre-trained models on W2 dataset
for 3 epochs with 8 batch size, AdamW optimizer
(Loshchilov and Hutter, 2017), 1→5 initial learning
rate, and linearly decreasing learning rate schedule
(with 1K warmup). For our simple and WDR N -
gram applications, we mainly followed the same
training scheme of MEDUSA’s fine-tuning (Cai
et al., 2024). We shortly fine-tuned only for the
additional heads before the main full fine-tuning
because randomly initialized parameters of the ad-
ditional heads on top of the pre-trained model can
cause unstable training. Our simple and WDR
applications increase the number of parameters
by 8.39M per an additional MLP layer which are
0.65% out of the 1.3B total parameters. Similar to
the conventional LM experiments, we conducted
the hyperparameter search and we report the result-
ing optimal settings in Table 9. The fine-tuning ex-
periments with baseline GPTNEO 1.3B pre-trained
model took around 22.25 hours on average based
on a single RTX3090 GPU. Our simple and WDR
applications took 28.03 and 29.35 hours on average,
respectively. We note that WDR method increased
the total training times with 4.71% on top of the
simple N -gram LM models.

A.3.2 Conditional Text Generation

Experiments

We implemented the encoder-decoder Transform-
ers (Vaswani et al., 2017) in different scales, small
and base. We trained the small Transformer for the
‘IWSLT14 En-De’ and ‘WMT18 En-Tr’ datasets,
and the base Transformer for the ‘WMT14 En-De’
dataset. Model and training configurations of these

758



Table 7: Changed configurations from the original Tensorized Transformer and Reformer (Ma et al., 2019; Kitaev
et al., 2020). We note that ‘# of Tokens’ indicates the total number of tokens in a mini-batch at each iteration.

Dataset Tensorized Transformer Reformer
# of Tokens # of Layers Learning Rate # of Tokens Learning Rate

PTB 3,840 3

0.0025

16,384

0.0001WikiText-2 3,840 3 8,192
Text8 4,800 6 512

WikiText-103 4,800 6 512

Table 8: Configurations of our proposed N -gram approaches: N , ε, and ϑ, used in the conventional LM and NMT
experiments.

LM Task NMT Task

Model Config. Dataset Model Config. Dataset
PTB W2 T8 W103 IWSLT14 WMT14 WMT18

TT+Sim N /ε/ϑ 2/1.0/0.2 4/1.0/0.2 3/1.0/0.2 2/1.0/0.1 TF+Sim N /ε/ϑ 3/1.0/0.3 2/1.0/0.1 2/1.0/0.2TT+WDR N /ε/ϑ 2/1.0/0.4 4/1.0/0.3 3/1.0/0.1 2/1.0/0.1
RF+Sim N /ε/ϑ 4/1.0/0.2 2/1.0/0.2 3/1.0/0.1 4/1.0/0.1 TF+WDR N /ε/ϑ 3/1.0/0.5 2/1.0/0.1 2/1.0/0.3RF+WDR N /ε/ϑ 4/1.0/0.1 2/1.0/0.3 3/1.0/0.1 4/1.0/0.1

Table 9: Configurations of our proposed N -gram ap-
proaches: N , ε, and ϑ, used in the LLM fine-tuning
experiments.

Model Config. Value
GPTNEO 1.3B + Sim N /ε/ϑ 2/0.10/0.08

GPTNEO 1.3B + WDR N /ε/ϑ 4/0.10/0.04

Table 10: Configurations of our proposed N -gram ap-
proaches: N , ε, and ϑ, used in the text diffusion model
experiments.

Dataset Config. Value
IWSLT14 En2De N /ε/ϑ 2/0.1/0.1
IWSLT14 De2En N /ε/ϑ 3/0.1/0.1

QQP N /ε/ϑ 3/0.5/0.2
WikiAuto N /ε/ϑ 4/1.0/0.1

models are described in ‘Small Enc-Dec TF NMT’
and ’Base Enc-Dec TF NMT’ columns of Table 6.
The total number of parameters of small and base
Transformer baselines are 32M and 77M, respec-
tively. We applied our simple and WDR N -gram
LM methods onto the decoder part. Each addi-
tional MLP layer in our simple and WDR methods
required the number of parameters by around 0.5M.
After hyperparameter search, we determined the
optimal hyperparameters, N , ε, and ϑ, and those
are described in the ‘NMT Task’ column of Ta-
ble 8. During training, we saved the best check-
point based on the validation results. We early
stopped the training whenever the model did not
beat its previous best performance for the ‘Patience’

times on the validation (Heo and Choi, 2023). The
experiments of small datasets, such as IWSLT14
En-De and WMT18 En-Tr, took 3 days in average
based on 2 GTX1080Ti GPUs, while the experi-
ments of large dataset, that is WMT14 En-De, took
3 days on average based on 4 RTX3090 GPUs. Dur-
ing testing, we applied beam search with 5 widths
to output the final translation results.

For the experiments of text diffusion model,
we heavily followed the model, diffusion pro-
cess, and training configurations of the previ-
ous works (Ye et al., 2023; Gao et al., 2022).
We refer to previous works for that information.
Consequently, the total number of parameters of
DINOISER(IWSLT14) / Difformer(QQP) / Dif-
former(WikiAuto) are 37M/109M/112M, respec-
tively. As explained in Section 3.2.3, we added
additional heads for WDR predictions on top of
the denoising model’s encoder (Transformer en-
coder). Notably, we did not apply the simple N -
gram method, since diffusion-based text generative
models usually follow non-autoregressive decoding
so there is no need for future word prediction. Each
added head increases by around 0.5M. We also con-
ducted a hyperparameter search for WDR-related
configurations, then we determined the optimal hy-
perparameters as demonstrated in Table 10. These
experiments took 30 hours in average based on a
single A4000 GPU.
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