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Abstract

The paper compares non-contextual and contex-
tual word embeddings in Named Entity Recog-
nition (NER) task. Word embeddings created
by the GloVe, ELMo, BERT and RoBERTa
models and the named entities predicted by the
LUKE model have been tested. Models based
on LSTM recursive neural network and con-
volutional neural network (CNN) have been
created. They use vector representations and
are being trained to recognize named entities in
text. Using these models, the impact of word
embeddings in the Named Entity Recognition
task has been examined. The datasets used in
the experiments are the Annotated Corpus for
Named Entity Recognition and CoNLL-2003.
We have investigated the importance of the size
of context and which vector representation per-
forms best in Named Entity Recognition. The
experiments, we have conducted, prove that
contextual word embeddings show their advan-
tage if the context is longer than one sentence.
Moreover, BERT and especially RoBERTa per-
form significantly worse than other models for
entity types with small number of instances.
Another finding is that cased BERT model
achieves better results than its uncased counter-
part.

1 Introduction

In this paper, Named Entity Recognition (NER),
one of the tasks of Natural Language Processing
(NLP), is examined. The NER tak is important in
many applications of NLP, for instance, in anal-
ysis of user’s utterances/commands passed to an
intelligent agent. Such utterances are transformed
with Automatic Speech Recognition (ASR) and
then processed with NER to improve quality of
tasks performed according to user’s requests, e.g.,
Question Answering, making reservations, etc.

To investigate the impact of the size of the con-
text on the NER task, we used two well-known
benchmark datasets; namely, the Annotated Cor-
pus for Named Entity Recognition (Walia) and

CoNLL-2003 (Sang and Meulder, 2003). The main
difference between these sets is the length of the
context. The former dataset consists of single sen-
tences, so that the context of each word is limited
only to the sentence in which it occurs. The latter
dataset consists of long documents where the mean-
ing of each word depends on the broad context.
The models that create the embedding vectors are:
non-contextual GloVe (Pennington et al., 2014),
contextual ELMo (Peters et al., 2018), BERT (De-
vlin et al., 2019), and RoBERTa (Liu et al., 2019),
which create word representations, and contextual
LUKE (Yamada et al., 2020), which creates entity
representations. These models differ in construc-
tion, in particular GloVe uses statistics. ELMo uses
recursive neural networks, while the other three
models, BERT, RoBERTa and LUKE, are based on
transformers.

The aim of this work is to examine the impact
of the choice of a model that creates representa-
tions of words or entities in the NER task regard-
ing the available context. Thus, models creating
non-contextual and contextual word embedding
vectors are to be examined. We use the word em-
bedding vectors created by GloVe, ELMo, BERT
and RoBERTa (words) and LUKE (entities), and
then train a model based on neural networks in the
task of Name Entity Recognition. We focus on
differences between non-contextual and contextual
embeddings in regards to the available context in
the data. Furthermore, we investigate the difference
between cased and uncased models that produce
word embedding vectors.

The source code and the data are available at the
following website https://staff.elka.pw.
edu.pl/~pandrusz/data/contexte/.

2 Related Work

Named Entity Recognition (NER) task has been
recently studied in the context of Deep Neural Net-
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Model F1
LSTM-CRF (Lample et al., 2016) 91.0
ELMo (Peters et al., 2018) 92.2
BERT (Devlin et al., 2019) 92.8
Akbik, Blythe, Vollgraf (2018) (Akbik et al., 2018) 93.1
Baevski, Edunov, Liu, Zettlemoyer, Auli (2019) (Baevski et al., 2019) 93.5
RoBERTa (Liu et al., 2019) 92.4
LUKE (Yamada et al., 2020) 94.3

Table 1: Named Entity Recognition results from (Yamada et al., 2020).

works (Li et al., 2022). As different network ar-
chitectures emerge, they are applied in NER task.
Beneath the architectures, there are also word rep-
resentations – embedding vectors – which are im-
portant in recognition of different entities types.

The first well-known representation using em-
bedding vectors is Word2Vec (Mikolov et al.,
2013). This solution creates similar vectors for
semantically close words and uses two standard
approaches: skip-gram and CBOW. After popu-
larization of Word2Vec, more solutions appeared
quickly, including very popular GloVe (Pennington
et al., 2014) or FastText (Bojanowski et al., 2017).

In GloVe, learning is based on the probability
of occurrence of a given word. To estimate this
probability a table of mutual words occurrence is
calculated. Then, we count how many times every
word has appeared in the context of a given word.
The context in the case is a "frame" with a width
of 3 - the word preceding, a given word, and the
following word.

The above models, produce the same vectors
for a word no matter the context a word appears
in. Thus, contextual vector embeddings were pro-
posed. Contextual vectors are the extension of the
described solutions. These models generate differ-
ent vectors for the same word depending on the
context of the word, i.e. words appearing next to
the analyzed word.

ELMo (Peters et al., 2018) model uses recursive
neural networks – LSTMs – to generate vectors.
It process proceeding and following neighborhood
by applying bidirectional LSTMs. A different type
of contextual word embeddings models is based
on transformers. The well known representatives
of this type of solution are: BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019) and LUKE (Ya-
mada et al., 2020).

BERT drops recurrent mechanism and uses self
attention. This model was later improved by, e.g.,

different pre-training procedure in RoBERTa and
further improvements were incorporated in LUKE
model.

LUKE treats words and entities in the text as
independent tokens and generates their representa-
tions. It was tested on the CONLL-2003 dataset.
This model achieved the highest F1 result at the
time of its publication (please refer to Table 1).
The model finds all possible ranges of entities in
every sentence and then classifies them as one of
the defined types of named entities or no entity.
The representation of each entity is created by the
alignment of the representation of the first and last
word in the span and representation of the entity
corresponding to the span. The maximum length
of the entity span is 16 words, while the context is
512 tokens.

As there are many types of embeddings, a ques-
tion arises – which type is the best in a given
task. This aspect has been studied in the context
of emotion detection (Polignano et al., 2019) and
biomedical Natural Language Processing (Wang
et al., 2018). We investigate the types of embed-
ding vectors in Named Entity Recognition task for
English.

3 Model for Word Embeddings

Comparision

In this section, we present a description of the
model we built for examining the impact of the
method used for creating representations of words
and entities in the task of NER. It uses the word em-
bedding vectors created by the models described
in previous sections, and then trains neural net-
works to recognize named entity. The number of
entity types depends on the dataset we use and
amounts to 8 for the Annotated Corpus for Named
Entity Recognition called Kaggle (Walia) and 4 for
CoNLL-2003 (Sang and Meulder, 2003).

Modern models, after appropriate training,
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Figure 1: Model architecture using GloVe, ELMo, BERT or RoBERTa.

achieve very good results in the CoNLL-2003 rank-
ing. For example, the LUKE achieves F1 score
of 94.3, placing it at the top of the ranking. The
idea in our research is to compare only the word
embedding vectors, which are not adapted to NER
task, not the whole models trained for NER task.

The architecture of the model we created is
shown in Figure 1. LUKE, on the other hand, cre-
ates entity representations that are not available.
For this reason, we use a version of the LUKE
model that has been trained on the CoNLL-2003
dataset and its output, which is an entity type, in-
stead of multidimensional vectors that are used to
predict an entity type. The LUKE’s output is pro-
cessed in the same way as the model treats word
embeddings – they are the input of the neural net-
work.

3.1 Word Embedding Vectors

The first part of the model, we created, is a vector
representation provided by one of the models:

GloVe trained on Wikipedia from 2014 and Gi-
gaword 5 with the largest, 300-dimensional vector
size.

ELMo and the following models generate con-
textual vectors. We used ELMo Medium, whose
parameters are: total 28 million trainable parame-

ters, 512-dimensional embeding vectors.
BERT is the most popular model in NLP. Thus,

we decided to investigate the effect of two different
versions of this model available in the Transform-
ers library1: bert-base-cased and bert-base-uncased.
The parameters of these models are as follows: 12
layers of transformers, 768 hidden units, a total of
110 million trainable parameters, 768-dimensional
vectors. The cased model was trained on text con-
sisting of lowercase and uppercase letters, while the
text used to train the uncased model consisted only
of lowercase letters. When not explicitly specified,
BERT-cased has been used.

The RoBERT model is also from the Transform-
ers library. The version we are using is roberta-
base, which has the same number of parameters as
bert-base.

The last model, LUKE, is also available in the
Transformers library. It uses the studio-ousia/luke-
large-finetuned-conll-2003 version that was fine-
tuned on the CoNLL-2003 dataset. It is not possible
to use this model to classify the Kaggle dataset
because the named entity types are already de-
fined. There are no embedding vectors in the out-
put, because the model is adapted to predict en-

1https://huggingface.co/docs/transformers/index
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Word Network Prec. Recall F1 Prec. Recall F1 Acc.
embeddings type macro macro macro micro micro micro
GloVe LSTM 68.32 60.79 62.83 75.30 78.96 77.09 96.24
ELMo LSTM 58.63 57.38 57.72 78.26 80.67 79.45 96.60

BERT LSTM 56.49 52.15 52.88 75.42 77.15 76.27 96.00
RoBERTa LSTM 47.00 41.99 42.95 63.73 65.93 64.81 94.25
GloVe CNN 55.23 52.21 52.75 68.32 72.18 70.20 94.59
ELMo CNN 56.84 53.03 53.90 73.90 76.63 75.24 95.74
BERT CNN 46.70 46.02 45.48 71.03 74.11 72.54 95.28
RoBERTa CNN 41.85 36.09 36.55 56.68 58.50 57.57 92.93

Table 2: Results for Kaggle set (the best results marked in bold).

Word embed. Network type art eve geo gpe nat org per tim
GloVe LSTM 18.92 38.71 82.55 94.21 59.65 56.86 72.86 78.85
ELMo LSTM 2.44 25.32 84.15 92.54 37.21 62.45 73.45 84.21

BERT LSTM 0.00 28.57 82.71 87.38 15.38 56.46 70.16 82.36
RoBERTa LSTM 0.00 28.12 72.93 67.01 0.00 39.81 58.77 76.95
GloVe CNN 0.00 40.00 78.90 93.20 34.38 44.69 60.37 70.50
ELMo CNN 2.47 23.68 80.46 91.30 30.00 54.55 72.17 77.53
BERT CNN 0.00 0.00 79.33 86.03 5.41 47.85 66.20 79.04
RoBERTa CNN 0.00 11.54 66.12 65.21 0.00 30.57 48.29 70.66

Table 3: Results for entity types in Kaggle set.

tity types. The number at the model output, cor-
responding to the expected entity type, is treated
as a 1-dimensional vector and is the input of the
neural network. The idea behind this solution is
to use all models in the same way, i.e., to train
LSTM or CNN networks based on the created rep-
resentations. Due to the lack of word embedding
representation for the LUKE model, the result pre-
dicted by it was used.

3.2 Trainable Neural Network Part of Model

The word embedding vectors are prepared just be-
fore entering the neural network. They are then
processed by recursive neural network LSTM or
convolutional neural network (CNN). In the next
step, the result goes through the dropout layer with
a value of 0.3. Finally, the values are linearly trans-
formed and the logarithm of the softmax function
is returned.

Batch sizes were 4 for training and 2 for vali-
dation and test. The hidden layer size of LSTM
and CNN was 100. The learning rate was 10→3,
while the number of iterations was 5. The Adam
optimizer was used.

3.3 Differences Between the Proposed

Solution and the Existing Models

It is worth emphasizing the differences between the
proposed solution and the models trained to detect
named entities, which are mentioned in Table 1.
Figure 1 shows the architecture of the model, where
we can see that the embedding vectors are used by
the LSTM and CNN networks. The goal of such a
solution is to use the same mechanism for all vector
representations. It seems that such a procedure
may significantly reduce the efficiency of Named
Entity Recognition, because single layers of neural
networks did not achieve good results in the NER
task, which indicates the level of complexity of the
models described in Table 1. Models presented
in this table were finetuned on the CoNLL-2003
dataset. Nevertheless, the purpose of this work is
to compare the effects of word embedding vectors
only, not to achieve the best result.

4 Experiments

This section presents the results of experiments
we conducted in our study. We present the re-
sults over two NER datasets: Annotated Corpus for
Named Entity Recognition called Kaggle (Walia)
and CoNLL-2003 (Sang and Meulder, 2003).
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Word Network Prec. Recall F1 Prec. Recall F1 Acc.
embeddings type macro macro macro micro micro micro
GloVe LSTM 58.18 67.79 61.47 56.84 67.79 61.83 92.56
ELMo LSTM 82.32 86.35 84.21 84.46 88.24 86.31 97.46
BERT LSTM 80.00 79.63 79.61 81.15 83.25 82.19 96.16
RoBERTa LSTM 67.72 70.78 69.12 70.71 74.58 72.59 94.51
LUKE LSTM 92.64 92.78 92.71 94.05 94.02 94.03 98.66

GloVe CNN 48.71 57.03 49.37 36.50 56.29 44.28 89.08
ELMo CNN 76.08 80.56 78.05 75.54 82.08 78.68 96.51
BERT CNN 71.80 72.92 71.90 70.08 75.43 72.66 94.46
RoBERTa CNN 61.04 62.80 61.12 61.41 67.23 64.19 92.84
LUKE CNN 85.98 88.71 87.26 88.83 92.10 90.44 98.33

Table 4: Results for CoNLL-2003 set.

4.1 Description of Tests

On the Kaggle dataset, the following combinations
of the vector representation models: GloVe, ELMo,
BERT, RoBERTa and the type of neural network:
LSTM, CNN were tested. On the other hand, on
the CoNLL-2003 dataset, in addition to the above-
mentioned algorithms, LUKE was also tested. In
each case, the precision, recall and F1 score were
calculated, divided into micro and macro, and ac-
curacy. In addition, the F1 results of each category
were calculated in order to examine which labels
the model copes with the worst.

We divided the dataset into three parts: 70% -
training, 15% - validation, 15% - testing.

4.2 Evaluation method

The word embedding vectors created by GloVe,
ELMo, BERT and RoBERTa represent words, not
entities. For this reason, we used the IOB2 format.

Assuming that we count the detection of entire
entities, we can evaluate the operation of the model,
i.e., the entity must be accurately predicted to be
successful. According to this scheme we calculate
the precision and recall, and thus - the F1 measures.
This is a method published with the CoNLL-2003
dataset. In all experiments in the paper, averages of
5 runs are presented. The best results are marked
with bold.

4.3 Research Results on the Kaggle Dataset

The results of the experiments on the Kaggle
dataset are presented in Tables 2 and 3.

The first observation during the analysis of the
results for the Kaggle set is high accuracy of all
cases. There are no big differences between its
values in subsequent rows of the tables. There-

fore, comparing models based on accuracy seems
not to be a good idea. The F1 micro results oscil-
late between 64.81 and 79.45 for the LSTM neural
network and 57.57 – 75.24 for the CNN, while
the macro F1 results between 42.95 – 62.83 and
36.55 – 53.90. The difference between micro and
macro is greater than 20%, which shows that there
are large discrepancies in the number of elements
of different entity types. Definitely better results
are achieved by a model using a recursive type of
neural network. This is not a surprise, because re-
cursion is perfect for language learning, because a
given word depends on those that occurred earlier.

In both cases – LSTM and CNN, the best micro
results are achieved by the model using the embed-
ding vectors created by ELMo. It is ranked first in
the ranking of all the measures used, achieving F1
micro scores of 79.45 and 75.24, respectively.

However, in the case of macro average, the best
F1 result is achieved by GloVe with LSTM equal
to 62.83, and with CNN it is only 0.85 pp lower
than the best result achieved by ELMo. It is worth
noting the high value of GloVe macro precision
with LSTM, which is equal to 68.32. The results of
GloVe average macro show that the word embed-
ding vectors have a greater impact on the ability to
detect named entities of different types with more
similar effectiveness, regardless of the number of
elements in a given entity type. It may be surpris-
ing that the model using GloVe word embedding
vectors seems to work so well. However, keeping
in mind that the context of words in the Kaggle
datasset is very limited, for this reason, context
models do not have significant advantage over non-
contextual models.

As for the BERT model, it ranks third for LSTM
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Word emb. Net. loc misc org per
GloVe LSTM 67.62 52.48 55.07 70.72
ELMo LSTM 89.05 70.05 81.89 95.86
BERT LSTM 85.66 64.81 78.78 89.20
RoBERTa LSTM 76.77 50.07 68.77 80.87
LUKE LSTM 94.96 84.60 93.50 97.77

GloVe CNN 74.96 62.18 32.49 27.85
ELMo CNN 84.08 70.82 66.91 90.37
BERT CNN 79.27 65.50 65.51 77.31
RoBERTa CNN 71.29 45.08 58.03 70.08
LUKE CNN 95.12 67.61 88.57 97.74

Table 5: Results for CoNLL-2003 set per entity type.

and second for CNN in micro results. It achieves
the largest difference between the average micro
and macro F1 results, which for the CNN case is as
much as 27.06 pp. This shows how much it relies
on a similar distribution of elements in entity types.

The worst results in all cases were achieved by
the RoBERTa model. It is worth recalling that ac-
cording to Table 1 the RoBERTa model, despite
being an improved BERT model, performs worse
in the task of NER compared to BERT. However,
the difference is only 0.4 pp. Nevertheless, the re-
sults, we obtained, of the word embedding vectors
created by RoBERTa are surprisingly low with a
significant margin to BERT (around 9-13 pp.).

Table 3 shows the F1 results of each label for
each case tested. For the entity type "art", the re-
sults of the most test cases are equal to 0. GloVe
with LSTM achieved an F1 score significantly
higher than other models, but still very low –
18.92%. The number of elements of the "art" cate-
gory is only 59, which to some extent explains the
difficulties in learning how to recognize this type
of entity by the model. Two other categories with a
small number of elements are "nat" and "eve", re-
spectively 30 and 56. In these cases, the F1 scores
of all models are definitely lower than for more
numerous categories, leading to the same conclu-
sion. In addition, it can be seen that the BERT
and RoBERTa models achieve significantly lower
results than other models in detecting "nat" entities.

In summary, the best embedding vector model
for the Kaggle dataset is ELMo, because it achieves
the best average micro scores. Nevertheless, the
GloVe model is best at predicting different entity
types, on average. The worst results were achieved
by the RoBERTa model and, similarly to the BERT
model, it performs significantly worse for entity

types with small number of instances.

4.4 Research Results on the CoNLL-2003

Dataset

The first noticeable difference between the research
results on the CoNLL-2003 dataset (Tables 4 and
5) and Kaggle is that the GloVe model achieves
the lowest results in all categories. This is because
the CoNLL-2003 dataset is divided into documents,
so the context of each word is much broader than
Kaggle’s. Small context is the only advantage of
non-contextual embedding vectors over contextual
ones.

An additional model tested on the CoNLL-2003
dataset is LUKE. It is a model created for tasks
dealing with entities, which achieved by far the
best results in our study. The F1 result of the micro
combination of LUKE with CNN is better than
the second result for this type of network by as
much as 11.76 pp. ELMo is in the second place
and has a few percent advantage over the BERT
model. The last but one place is occupied by the
RoBERTa model, with much better results than the
last GloVe. It is worth paying attention to the small
discrepancy in the average micro and macro results.
The difference between the extreme cases of F1
measure is 3.47 pp. for LSTM and 5.09 pp. for
CNN. This is due to the similar number of elements
in all categories, where the only category with a
different number of elements is "MISC" (around
twice smaller than other categories).

Table 5 presents F1 results for individual labels.
The distribution for GloVe with LSTM is signif-
icantly different from that for GloVe with CNN,
especially for "PER" type, where the difference is
42.87 pp. Other models achieve significantly better
results for this type of entity, and the LUKE model
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Word Network Prec. Recall F1 Prec. Recall F1 Acc.
embeddings type macro macro macro micro micro micro
BERT-cased LSTM 56.49 52.15 52.88 75.42 77.15 76.27 96.00

BERT-uncased LSTM 50.89 47.64 48.38 73.02 73.56 73.29 95.07
BERT-cased CNN 46.70 46.02 45.48 71.03 74.11 72.54 95.28
BERT-uncased CNN 46.11 43.08 43.41 68.80 68.25 68.52 94.28

Table 6: Results of BERT-cased and BERT-uncased for Kaggle set.

Word Network Prec. Recall F1 Prec. Recall F1 Acc.
embeddings type macro macro macro micro micro micro
BERT-cased LSTM 80.00 79.63 79.61 81.15 83.25 82.19 96.16

BERT-uncased LSTM 76.82 75.20 75.91 78.75 78.33 78.54 95.23
BERT-cased CNN 71.80 72.92 71.90 70.08 75.43 72.66 94.46
BERT-uncased CNN 70.26 71.51 71.12 70.86 71.51 71.18 94.01

Table 7: Results of BERT-cased and BERT-uncased for CoNLL-2003 set.

yields very high scores: 97.77 for LSTM and 97.74
for CNN. The worst scores can be observed for the
"MISC" category. It is around twice as numerous
as the others, and this is the reason for the worse
results.

In conclusion, the LUKE model is by far the
best choice of all the models tested. However,
the system uses its ability to create entity repre-
sentations. For word representations, the ELMo
model achieves the best results, similarly to the
Kaggle dataset. This model is followed by BERT,
RoBERTa and GLoVe. The latter model yields sig-
nificantly worse results as it is the only one model
that creates non-contextual embeddings and the
CoNLL-2003 dataset consists of long documents,
thus long context is available.

Another finding is that RoBERTa underperforms
compared to BERT. Despite being an optimized
version of BERT, RoBERTa does not always out-
perform it in Named Entity Recognition (NER)
tasks, please refer to Table 1. Several factors con-
tribute to this. Firstly, there are differences in pre-
training. RoBERTa removes the Next Sentence
Prediction (NSP) task present in BERT. While stud-
ies have suggested that NSP is not critical for many
NLP tasks, it might play a role in NER, where
cross-sentence context can be important. Sec-
ondly, RoBERTa performs worse than BERT in
NER tasks on both the CoNLL-2003 and Kaggle
datasets. RoBERTa struggles particularly with less
frequent entity types such as "nat" (nationalities)
and "art" (artifacts). BERT, with NSP training,
may be better at capturing global document-level

Figure 2: A bar chart comparing F1-scores for differ-
ent entity categories with separate bars for BERT and
RoBERTa on the CoNLL-2003 dataset.

context. Thirdly, RoBERTa employs an improved
subword encoding mechanism – Byte-Pair Encod-
ing at the byte level, which enhances generalization
for rare words. However, in NER, this can lead to
excessive fragmentation of named entities, making
them harder to classify correctly.

An F1-score comparison, please refer to Figure
2, indicates that RoBERTa performs worse across
all entity types on the CoNLL-2003 dataset.

RoBERTa’s optimizations impact computational
requirements in various ways. RoBERTa was
trained on 160GB of raw text, whereas BERT used
13GB, requiring significantly more memory and
compute power. Eliminating Next Sentence Pre-
diction (NSP) should theoretically improve com-
putational efficiency, but it does not necessarily
enhance NER performance.

To conclude, while RoBERTa is designed as an
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improved version of BERT, its modifications do not
always lead to better performance in NER tasks.
It is more computationally demanding yet does
not always leverage its increased training data and
longer context effectively for entity recognition.

4.5 Meaning of Capital Letters. Comparison

of BERT-cased and BERT-uncased Results

At the first glance, the task of Named Entity Recog-
nition seems to consist in detecting proper names.
This is not true in all cases, because there are en-
tities that have a defined type and are not proper
names, for example, the date in the Kaggle dataset
is of type "tim". Nevertheless, many named en-
tities begin with capital letters, for example, the
first name and surname of a person, or the name
of an organization. Thus, we investigate whether
the BERT-cased model, pre-trained on a dataset
containing uppercase and lowercase letters, pro-
duces embedding vectors that outperform those
produced by BERT-uncased, a model that has been
pre-trained on an all-lowercase dataset.

The test results for BERT-cased and BERT-
uncased are presented in Tables 6 and 7. The effects
of these models on the Kaggle and CoNLL-2003
datasets were examined in the same way as the
effects of the models in the previous sections.

The results of research on both datasets show
that the BERT-cased model creates embedding vec-
tors that work better in the task of detecting named
entities. The only case where the BERT-uncased
model performed better is CNN’s BERT for the
CoNLL-2003 dataset, where the micro precision is
0.78 pp. higher than that achieved by BERT-cased.
For the Kaggle dataset, the largest difference in F1
micro scores is 4.02 pp. while the biggest differ-
ence in F1 macro results is 4.50 pp. The analogous
values for the CoNLL-2003 dataset are 3.65 pp.
and 2.7 pp., respectively. The differences in the
results are significant, considering that the only dif-
ference is the size of the letters. The BERT-cased
model produces embedding vectors that work bet-
ter in the NER task.

5 Conclusions

In this paper, the influence of the choice of a model
creating word embedding vectors on the results of
the Named Entity Recognition, one of the widely
used Natural Language Processing tasks, was in-
vestigated.

Five models creating word embeddings were

used for the research: non-contextual GloVe, con-
textual ELMo, BERT, and RoBERTa, which create
word representations, and contextual LUKE, which
creates entity representations.

Based on the experiments, it can be concluded
that in the case of Named Entity Recognition in
single sentences (short context), the ELMo’s em-
beddings perform the best. GloVe achieves slightly
worse results. The context of the word is signifi-
cantly less important when we are limited to just a
single sentence, so using GloVe’s word embedding
vectors seems like a good idea. The BERT model
also performs well, while the RoBERTa model
ranks in the last position. However, in the NER
task with the long context, the best performer is
LUKE, which achieved much higher results than
other models. Among the models creating repre-
sentations of words, the best results were achieved
by ELMo, and the worst by GloVe. This model
creates non-contextual embedding vectors, which
is why it does not perform well with long texts,
i.e., long context. BERT again performs better than
RoBERTa but worse than ELMo.

Another finding is that, BERT and especially
RoBERTa perform significantly worse than other
models for entity types with small number of in-
stances for both short and long context. GloVe
yields the best results in such a case for short con-
text, especially with LSTM.

Finally, the effect of keeping/removing upper
letters was investigated in the Named Entity Recog-
nition task. Two types of BERT models were tested:
BERT-cased, which was pre-trained on a dataset
consisting of uppercase and lowercase letters, and
BERT-uncased, which was pre-trained on a dataset
consisting of only lowercase letters. As it turned
out, such a small change in the dataset led to sig-
nificantly better results of the BERT-cased model.

An interesting extension of this paper seems to
be the study of the influence of the method of creat-
ing embedding vectors in other Natural Language
Processing tasks, as well as the study of other mod-
els. Another possible continuation is to use the
entity and words representations created by LUKE
and examine their influence on the results of the
experiments. For this purpose, it would be nec-
essary to implement the LUKE model, because
the embedding vectors created by LUKE are not
available.
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